A model for the quantum Brayton refrigerator that takes the harmonic oscillator system as the working substance is established. Expressions of cooling load, coefficient of performance (COP), and ecological function are derived. With numerical illustrations, the optimal ecological performance is investigated. At the same time, effects of heat leakage and quantum friction are also studied. For the case with the classical approximation, the optimal ecological performance, and effects of heat leakage and quantum friction are also investigated. For both general cases and the case with classical approximation, the results indicate that the ecological function has a maximum. The irreversible losses decrease the ecological performance, while having different effects on the optimal ecological performance. For the case with classical approximation, numerical calculation with friction coefficient μ = 0.02 and heat leakage coefficient Ce = 0.01 shows that the cooling load (RE) at the maximum ecological function is 6.23% smaller than the maximum cooling load (Rmax). The COP is also increased by 12.1%, and the exergy loss rate is decreased by 27.6%. Compared with the maximum COP state, the COP (ɛE) at the maximum ecological function is 0.55% smaller than the maximum COP (ɛmax) and that makes 7.63% increase in exergy loss rate, but also makes 6.17% increase in cooling load and 6.20% increase in exergy output rate.

References

References
1.
Hoffmann
,
K. H.
,
Burzler
,
J. M.
, and
Schubert
,
S.
,
1997
, “
Endoreversible Thermodynamics
,” ,
22
, pp.
311
355
.
2.
De Vos
,
A.
,
2010
,
Reversible Computing: Fundamentals, Quantum Computing, and Applications
,
Wiley-VCH
,
New York
.
3.
Andresen
,
B.
,
2011
, “
Current Trends in Finite-Time Thermodynamics
,”
Angew. Chem. Int. Ed.
,
50
, pp.
2690
2704
.
4.
Kosloff
,
R.
,
2013
, “
Quantum Thermodynamics: A Dynamical Viewpoint
,”
Entropy
,
15
, pp.
2100
2128
.
5.
Chen
,
L. G.
,
Liu
,
C.
, and
Feng
,
H. J.
,
2017
, “
Work Output and Thermal Efficiency Optimization for an Irreversible Meletis-Georgiou Cycle With Heat Loss and Internal Irreversibility
,”
Appl. Therm. Eng.
,
126
, pp.
858
866
.
6.
Chen
,
L. G.
,
Ma
,
K.
,
Ge
,
Y. L.
, and
Sun
,
F. R.
,
2017
, “
Minimum Entropy Generation Path for an Irreversible Light-Driven Engine With [A] = [B] Reacting System and Linear Phenomenological Heat Transfer Law
,”
Environ. Eng. Manage. J.
,
16
, pp.
2035
2043
.
7.
Sieniutycz
,
S.
, and
Tsirlin
,
A.
,
2017
, “
Finding Limiting Possibilities of Thermodynamic Systems by Optimization
,”
Philos. Trans. R. Soc. A
,
375
, p.
20160219
.
8.
Feidt
,
M.
,
2017
, “
The History and Perspectives of Efficiency at Maximum Power of the Carnot Engine
,”
Entropy
,
19
, p.
369
.
9.
Chen
,
W. J.
,
Feng
,
H. J.
,
Chen
,
L. G.
, and
Xia
,
S. J.
,
2018
, “
Optimal Performance Characteristics of Subcritical Simple Irreversible Organic Rankine Cycle
,”
J. Therm. Sci.
,
27
, pp.
555
562
.
10.
Zhu
,
F. L.
,
Chen
,
L. G.
, and
Wang
,
W. H.
,
2018
, “
Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle
,”
Entropy
,
20
, p.
167
.
11.
Zhang
,
L.
,
Chen
,
L. G.
,
Xia
,
S. J.
,
Wang
,
C.
, and
Sun
,
F. R.
,
2018
, “
Entropy Generation Minimization for Reverse Water Gas Shift (RWGS) Reactor
,”
Entropy
,
20
, p.
415
.
12.
Chen
,
L. G.
,
Xia
,
S. J.
, and
Sun
,
F. R.
,
2018
, “
Entropy Generation Minimization for Isothermal Crystallization Processes With a Generalized Mass Diffusion Law
,”
Int. J. Heat Mass Transf.
,
116
, pp.
1
8
.
13.
Ge
,
Y. L.
,
Chen
,
L. G.
, and
Qin
,
X. Y.
,
2018
, “
Effect of Specific Heat Variations on Irreversible Otto Cycle Performance
,”
Int. J. Heat Mass Transf.
,
122
, pp.
403
409
.
14.
Chen
,
L. G.
,
Wang
,
C.
,
Xia
,
S. J.
, and
Sun
,
F. R.
,
2018
, “
Thermodynamic Analysis and Optimization of Extraction Process of CO2 From Acid Seawater by Using Hollow Fiber Membrane Contactor
,”
Int. J. Heat Mass Transf.
,
124
, pp.
1310
1320
.
15.
Chen
,
L. G.
,
Zhang
,
L.
,
Xia
,
S. J.
, and
Sun
,
F. R.
,
2018
, “
Entropy Generation Minimization for Hydrogenation of CO2 to Light Olefins
,”
Energy
,
147
, pp.
187
196
.
16.
Li
,
P. L.
,
Chen
,
L. G.
,
Xia
,
S. J.
, and
Zhang
,
L.
,
2019
, “
Entropy Generation Rate Minimization for in Methanol Synthesis Via CO2 Hydrogenation Reactor
,”
Entropy
,
21
, p.
174
.
17.
Kosloff
,
R.
,
1984
, “
A Quantum Mechanical Open System as a Model of a Heat Engine
,”
J. Chem. Phys.
,
80
, pp.
1625
1631
.
18.
Geva
,
E.
, and
Kosloff
,
R.
,
1992
, “
A Quantum-Mechanical Heat Engine Operating in Finite Time. A Model Consisting of Spin-1/2 Systems as Working Fluid
,”
J. Chem. Phys.
,
96
, pp.
3054
3067
.
19.
Geva
,
E.
, and
Kosloff
,
R.
,
1992
, “
On the Classical Limit of Quantum Thermodynamics in Finite Time
,”
J. Chem. Phys.
,
97
, pp.
4398
4412
.
20.
Feldmann
,
T.
,
Geva
,
E.
,
Kosloff
,
R.
, and
Salamon
,
P.
,
1996
, “
Heat Engines in Finite Time Governed by Master Equations
,”
Am. J. Phys.
,
64
, pp.
485
492
.
21.
Lin
,
B.
, and
Chen
,
J.
,
2003
, “
Optimization on the Performance of a Harmonic Quantum Brayton Heat Engine
,”
J. Appl. Phys.
,
94
, pp.
6185
6191
.
22.
Wu
,
F.
,
Chen
,
L. G.
,
Sun
,
F. R.
, and
Wu
,
C.
,
1998
, “
Performance and Optimization Criteria of Forward and Reverse Quantum Stirling Cycles
,”
Energy Convers. Manage.
,
39
, pp.
733
739
.
23.
He
,
J.
,
Mao
,
Z.
, and
Wang
,
J.
,
2006
, “
Influence of Quantum Degeneracy on the Performance of a Gas Stirling Engine Cycle
,”
Chin. Phys.
,
15
, pp.
1953
1959
.
24.
Yin
,
Y.
,
Chen
,
L. G.
, and
Wu
,
F.
,
2018
, “
Performance of Quantum Stirling Heat Engine With Numerous Copies of Extreme Relativistic Particles Confined in 1D Potential Well
,”
Physica A
,
503
, pp.
58
70
.
25.
Şişman
,
A.
, and
Saygin
,
H.
,
2001
, “
Re-Optimization of Otto Power Cycles Working With Ideal Quantum Gases
,”
Phys. Scr.
,
64
, pp.
108
112
.
26.
Wu
,
F.
,
Chen
,
L. G.
,
Sun
,
F. R.
, and
Wu
,
C.
,
2006
, “
Quantum Degeneracy Effect on Performance of Irreversible Otto Cycle With Deal Bose Gas
,”
Energy Convers. Manage.
,
47
, pp.
3008
3018
.
27.
Wang
,
H.
,
Liu
,
S.
, and
He
,
J.
,
2009
, “
Performance Analysis and Parametric Optimum Criteria of a Quantum Otto Heat Engine With Heat Transfer Effects
,”
Appl. Therm. Eng.
,
29
, pp.
706
711
.
28.
He
,
J.
,
Chen
,
J.
, and
Hua
,
B.
,
2002
, “
Influence of Quantum Degeneracy on the Performance of a Stirling Refrigerator Working With an Ideal Fermi Gas
,”
Appl. Energy
,
72
, pp.
541
554
.
29.
Yin
,
Y.
,
Chen
,
L. G.
, and
Wu
,
F.
,
2018
, “
Performance Analysis and Optimization for Generalized Quantum Stirling Refrigeration Cycle With Working Substance of a Particle Confined in a General 1D Potential
,”
Physica E
,
97
, pp.
57
63
.
30.
Lin
,
B.
, and
Chen
,
J.
,
2003
, “
Optimal Analysis on the Performance of an Irreversible Harmonic Quantum Brayton Refrigerator Cycle
,”
Phys. Rev. E
,
68
, p.
56117
.
31.
He
,
J.
,
Xin
,
Y.
, and
He
,
X.
,
2007
, “
Performance Optimization of Quantum Brayton Refrigeration Cycle Working With Spin Systems
,”
Appl. Energy
,
84
, pp.
176
186
.
32.
Liu
,
X. W.
,
Chen
,
L. G.
, and
Ding
,
Z. M.
,
2017
, “
Fundamental Performance Optimization of an Irreversible Quantum Spin 1/2 Brayton Refrigerator
,”
Therm. Sci. Eng. Prog.
,
4
, pp.
30
34
.
33.
Wu
,
F.
,
Chen
,
L. G.
,
Wu
,
S.
, and
Wu
,
C.
,
2006
, “
Performance of an Irreversible Quantum Ericsson Cooler at Low Temperature Limit
,”
J. Phys. D-Appl. Phys.
,
39
, pp.
4731
4737
.
34.
Chen
,
J.
,
He
,
J.
, and
Hua
,
B.
,
2002
, “
The Influence of Regenerative Losses on the Performance of a Fermi Ericsson Refrigerator Cycle
,”
J. Phys. A-Math. Gen.
,
35
, pp.
7995
8004
.
35.
Feldmann
,
T.
, and
Kosloff
,
R.
,
2000
, “
Performance of Discrete Heat Engines and Heat Pumps in Finite Time
,”
Phys. Rev. E
,
61
, pp.
4774
4790
.
36.
Çakmak
,
S.
,
Altintas
,
F.
,
Gençten
,
A.
, and
Müstecaplıoğlu
,
ÖE
,
2017
, “
Irreversible Work and Internal Friction in a Quantum Otto Cycle of a Single Arbitrary Spin
,”
Eur. Phys. J. D
,
71
, p.
75
.
37.
Liu
,
X. W.
,
Chen
,
L. G.
,
Wu
,
F.
, and
Sun
,
F. R.
,
2015
, “
Optimal Fundamental Characteristic of a Quantum Harmonic Oscillator Carnot Refrigerator With Multi-Irreversibilities
,” ,
6
, pp.
537
552
.
38.
Liu
,
X. W.
,
Chen
,
L. G.
,
Wu
,
F.
, and
Sun
,
F. R.
,
2014
, “
Optimal Performance of a Spin Quantum Carnot Heat Engine With Multi-Irreversibilities
,”
J. Energy Inst.
,
87
, pp.
69
80
.
39.
Chen
,
J.
,
Lin
,
B.
, and
Hua
,
B.
,
2002
, “
The Performance of a Quantum Heat Engine Working With Spin Systems
,”
J. Phys. D-Appl. Phys.
,
35
, pp.
2051
2057
.
40.
Lin
,
B.
, and
Chen
,
J.
,
2003
, “
Performance Analysis of an Irreversible Quantum Heat Engine Working With Harmonic Oscillators
,”
Phys. Rev. E
,
67
, p.
46105
.
41.
Chen
,
L. G.
,
Zhang
,
W. L.
, and
Sun
,
F. R.
,
2007
, “
Power, Efficiency, Entropy Generation Rate and Ecological Optimization for a Class of Generalized Irreversible Universal Heat Engine Cycles
,”
Appl. Energy
,
84
, pp.
512
525
.
42.
Chen
,
L. G.
,
Wu
,
C.
,
Sun
,
F. R.
, and
Cao
,
S.
,
1999
, “
Maximum Profit Performance of a Three-Heat-Reservoir Heat Pump
,”
Int. J. Energy Res.
,
23
, pp.
773
777
.
43.
Angulo-Brown
,
F.
,
1991
, “
An Ecological Optimization Criterion for Finite-Time Heat Engines
,”
J. Appl. Phys.
,
69
, pp.
7465
7469
.
44.
Yan
,
Z.
,
1993
, “
Comment on “Ecological Optimization Criterion for Finite-Time Heat Engines”
,”
J. Appl. Phys.
,
73
, p.
3583
.
45.
Chen
,
L. G.
,
Sun
,
F. R.
, and
Chen
,
W. Z.
,
1994
, “
On the Ecological Figures of Merit for Thermodynamic Cycles
,”
J. Eng. Therm. Energy Power
,
9
, pp.
374
376
.
46.
Ust
,
Y.
,
Safa
,
A.
, and
Sahin
,
B.
,
2005
, “
Ecological Performance Analysis of an Endoreversible Regenerative Brayton Heat-Engine
,”
Appl. Energy
,
80
, pp.
247
260
.
47.
Tyagi
,
S. K.
,
Chen
,
J. C.
, and
Kaushik
,
S. C.
,
2005
, “
Optimal Criteria Based on the Ecological Function of an Irreversible Intercooled Regenerative Modified Brayton Cycle
,”
Int. J. Exergy
,
2
, pp.
90
107
.
48.
Khaliq
,
A.
, and
Kumar
,
R.
,
2005
, “
Finite-Time Heat-Transfer Analysis and Ecological Optimization of an Endoreversible and Regenerative Gas-Turbine Power-Cycle
,”
Appl. Energy
,
81
, pp.
73
84
.
49.
Arias-Hernandez
,
L. A.
,
Barranco-Jimenez
,
M. A.
, and
Angulo-Brown
,
F.
,
2009
, “
Comparative Analysis of Two Ecological Type Modes of Performance for a Simple Energy Converter
,”
J. Energy Inst.
,
82
, pp.
223
227
.
50.
Ust
,
Y.
,
2009
, “
Performance Analysis and Optimization of Irreversible Air Refrigeration Cycles Based on Ecological Coefficient of Performance Criterion
,”
Appl. Therm. Eng.
,
29
, pp.
47
55
.
51.
Ma
,
K.
,
Chen
,
L. G.
, and
Sun
,
F. R.
,
2009
, “
Profit Performance Optimization for a Generalized Irreversible Combined Carnot Refrigeration Cycle
,”
Sadhana Acad. Proc. Eng. Sci.
,
34
, pp.
851
864
.
52.
Açıkkalp
,
E.
,
2013
, “
Models for Optimum Thermo-Ecological Criteria of Actual Thermal Cycles
,”
Therm. Sci.
,
17
, pp.
915
930
.
53.
Barranco-Jimenez
,
M. A.
, and
Sanchez-Salas
,
N.
,
2013
, “
Effect of Combined Heat Transfer on the Thermodynamic Performance of an Irreversible Solar-Driven Heat Engine at Maximum Ecological Conditions
,” ,
59
, pp.
179
186
.
54.
Ust
,
Y.
, and
Sahin
,
B.
,
2016
, “
Ecological Coefficient of Performance Analysis and Optimization of Gas Turbines by Using Exergy Analysis Approach
,”
Int. J. Exergy
,
21
, pp.
39
69
.
55.
Açıkkalp
,
E.
,
2016
, “
Analysis of a Brownian Heat Engine With Ecological Criteria
,”
Eur. Phys. J. Plus
,
131
, p.
426
.
56.
Dalkiran
,
A.
,
Açıkkalp
,
E.
, and
Caner
,
N.
,
2016
, “
Analysis of a Quantum Irreversible Otto Cycle With Exergetic Sustainable Index
,”
Physica A
,
53
, pp.
316
326
.
57.
Qin
,
X. Y.
,
Chen
,
L. G.
, and
Xia
,
S. J.
,
2017
, “
Ecological Performance of Four-Temperature-Level Absorption Heat Transformer With Heat Resistance, Heat Leakage and Internal Irreversibility
,”
Int. J. Heat Mass Transf.
,
114
, pp.
252
257
.
58.
Wu
,
Z. X.
,
Chen
,
L. G.
,
Ge
,
Y. L.
, and
Sun
,
F. R.
,
2017
, “
Power, Efficiency, Ecological Function and Ecological Coefficient of Performance of an Irreversible Dual-Miller Cycle (DMC) With Nonlinear Variable Specific Heat Ratio of Working Fluid
,”
Eur. Phys. J. Plus
,
132
, p.
203
.
59.
Ge
,
Y. L.
,
Chen
,
L. G.
,
Qin
,
X. Y.
, and
Xie
,
Z. H.
,
2017
, “
Exergy-Based Ecological Performance of an Irreversible Otto Cycle With Temperature-Linear-Relation Variable Specific Heats of Working Fluid
,”
Eur. Phys. J. Plus
,
132
, p.
209
.
60.
Ramírez-Moreno
,
M. A.
, and
Angulo-Brown
,
F.
,
2017
, “
Ecological Optimization of a Family of n-Müser Engines for an Arbitrary Value of the Solar Concentration Factor
,”
Physica A
,
469
, pp.
250
255
.
61.
Gonca
,
G.
,
2017
, “
Exergetic and Ecological Performance Analyses of a Gas Turbine System With Two Intercoolers and Two Re-Heaters
,”
Energy
,
124
, pp.
579
588
.
62.
Şöhret
,
Y.
,
2018
, “
Exergo-Sustainability Analysis and Ecological Function of a Simple Gas Turbine Aero-Engine
,”
J. Therm. Eng.
,
4
, pp.
2083
2095
.
63.
Wu
,
Z. X.
,
Chen
,
L. G.
, and
Feng
,
H. J.
,
2018
, “
Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) With Finite Speed of Piston
,”
Entropy
,
20
, p.
165
.
64.
You
,
J.
,
Chen
,
L. G.
,
Wu
,
Z. X.
, and
Sun
,
F. R.
,
2018
, “
Thermodynamic Performance of Dual-Miller Cycle (DMC) With Polytropic Processes Based on Power Output, Thermal Efficiency and Ecological Function
,”
Sci. China: Technol. Sci.
,
61
, pp.
453
463
.
65.
Wu
,
Z. X.
,
Chen
,
L. G.
,
Ge
,
Y. L.
, and
Sun
,
F. R.
,
2018
, “
Thermodynamic Optimization for an Air-Standard Irreversible Dual-Miller Cycle With Linearly Variable Specific Heat Ratio of Working Fluid
,”
Int. J. Heat Mass Transf.
,
124
, pp.
46
57
.
66.
Chen
,
L. G.
,
Ge
,
Y. L.
,
Qin
,
X. Y.
, and
Xie
,
Z. H.
,
2019
, “
Exergy-Based Ecological Optimization for a Four-Temperature-Level Absorption Heat Pump With Heat Resistance, Heat Leakage and Internal Irreversibility
,”
Int. J. Heat Mass Transf.
,
129
, pp.
855
861
.
67.
Chen
,
T. H.
,
2006
, “
Ecological Optimization of Quantum Spin-1/2 Heat Engine at the Classical Limit
,”
J. Phys. D-Appl. Phys.
,
39
, pp.
1442
1450
.
68.
Liu
,
X. W.
,
Chen
,
L. G.
,
Wu
,
F.
, and
Sun
,
F. R.
,
2010
, “
Ecological Optimization of an Irreversible Quantum Carnot Heat Engine With Spin-1/2 Systems
,”
Phys. Scr.
,
81
, p.
025003
.
69.
Chen
,
L. G.
,
Liu
,
X. W.
,
Ge
,
Y. L.
,
Wu
,
F.
, and
Sun
,
F. R.
,
2013
, “
Ecological Optimisation of an Irreversible Harmonic Oscillators Carnot Refrigerator
,”
J. Energy Inst.
,
86
, pp.
85
96
.
70.
Zhou
,
J. L.
,
Chen
,
L. G.
, and
Ding
,
Z. M.
,
2016
, “
Analysis and Optimization With Ecological Objective Function of Irreversible Single Resonance Energy Selective Electron Heat Engines
,”
Energy
,
111
, pp.
306
312
.
71.
Açıkkalp
,
E.
, and
Ahmadi
,
M. H.
,
2018
, “
Performance Analysis and Ecological Optimization of an Irreversible Quantum Heat Engine With 1/2 Spin System
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
466
470
.
72.
Rojas-Gamboa
,
D. A.
,
Rodríguez
,
J. I.
,
Gonzalez-Ayala
,
J.
, and
Angulo-Brown
,
F.
,
2018
, “
Ecological Efficiency of Finite-Time Thermodynamics: A Molecular Dynamics Study
,”
Phys. Rev. E
,
98
, p.
022130
.
You do not currently have access to this content.