Nonuniform heat fluxes are commonly observed in thermo-electronic devices that require distinct thermal management strategies for effective heat dissipation and robust performance. The limited research available on nonuniform heat fluxes focus mostly on microchannel heat sinks while the fundamental component, i.e., a single microchannel, has received restricted attention. In this work, an experimental setup for the analysis of variable axial heat flux is used to study the heat transfer in a single microchannel with fully developed flow under the effect of different heat flux profiles. Initially, a hot spot at different locations, with a uniform background heat flux, is studied at different Reynolds numbers, while varying the maximum heat fluxes in order to compute the heat transfer in relation to its dependent variables. Measurements of temperature, pressure, and flow rates at a different locations and magnitudes of hot spot heat fluxes are presented, followed by a detailed analysis of heat transfer characteristics of a single microchannel under nonuniform heating. Results showed that upstream hotspots have lower tube temperatures compared to downstream ones with equal amounts of heat fluxes. This finding can be of importance in enhancing microchannel heat sinks effectiveness in reducing maximum wall temperatures for the same amount of heat released, by redistributing spatially fluxes in a descending profile.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
,
2004
, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
183
205
.
3.
Tuckerman
,
D. B.
,
1984
, “Heat-Transfer Microstructures for Integrated Circuits,”
Lawrence Livermore National Lab
,
Livermore, CA
, Report No.
UCRL-53515.
https://apps.dtic.mil/docs/citations/ADA344846
4.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2010
, “
Analytical Heat Diffusion Models for Heat Sinks With Circular Micro-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4552
4566
.
5.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2010
, “
Analytical Heat Diffusion Models for Different Micro-Channel Heat Sink Cross-Sectional Geometries
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4002
4016
.
6.
Mital
,
M.
,
2013
, “
Analytical Analysis of Heat Transfer and Pumping Power of Laminar Nanofluid Developing Flow in Microchannels
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
429
436
.
7.
Solovitz
,
S. A.
,
2013
, “
Analysis of Parallel Microchannels for Flow Control and Hot Spot Cooling
,”
ASME. J. Therm. Sci. Eng. Appl.
,
5
(
4
), p.
041007
.
8.
Hu
,
H.
,
Zhang
,
J.
,
Du
,
X.
, and
Yang
,
L.
,
2011
, “
Analysis of Liquid-Cooled Heat Sink Used for Power Electronics Cooling
,”
ASME. J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021001
.
9.
Zhang
,
J.
,
Lin
,
P.
, and
Jaluria
,
Y.
,
2013
, “
Design and Optimization of Multiple Microchannel Heat Transfer Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
011004
.
10.
Lin
,
P.
,
Manuel
,
M. E.
,
Zhang
,
J.
,
Jaluria
,
Y.
, and
Gea
,
H.
,
2017
, “
Multi-Objective Design Optimization of Multiple Microchannel Heat Transfer Systems Based on Multiple Prioritized Preferences
,”
ASME. J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021011
.
11.
Hung
,
T. C.
, and
Yan
,
W. M.
,
2012
, “
Effects of Tapered-Channel Design on Thermal Performance of Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1342
1347
.
12.
Chai
,
L.
,
Xia
,
G.
,
Zhou
,
M.
, and
Li
,
J.
,
2011
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink With Offset Fan-Shaped Reentrant Cavities in Sidewall
,”
Int. Commun. Heat Mass Transfer
,
38
(
5
), pp.
577
584
.
13.
Wang
,
Z. H.
,
Wang
,
X. D.
,
Yan
,
W. M.
,
Duan
,
Y. Y.
,
Lee
,
D. J.
, and
Xu
,
J. L.
,
2011
, “
Multi-Parameters Optimization for Microchannel Heat Sink Using Inverse Problem Method
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2811
2819
.
14.
Husain
,
A.
, and
Kim
,
K. Y.
,
2009
, “Optimization of Ribbed Microchannel Heat Sink Using Surrogate Analysis,”
Computational Fluid Dynamics 2008
,
Springer
,
Berlin
, pp.
529
534
.
15.
Zhao
,
D.
,
Xiong
,
W.
,
Liu
,
W.
, and
Xu
,
J.
,
2014
, “
Study on DNB-Type Critical Heat Flux With Chopper-Cosine Axial Heat Flux Distributions
,”
ASME
Paper No. ICONE22-30945.
16.
Farnam
,
D.
,
Sammakia
,
B.
, and
Ghose
,
K.
,
2010
, “
Thermal Design Criteria for Extraordinary Performance of Devices Cooled by Microchannel Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
4
), p.
041001
.
17.
Huh
,
C.
, and
Kim
,
M. H.
,
2013
, “
Periodic Flow Boiling in a Non-Uniformly Heated Microchannel Heat Sink
,”
Int. J. Heat Fluid Flow
,
42
, pp.
164
175
.
18.
Ritchey
,
S.
,
Weibel
,
J.
, and
Garimella
,
S.
,
2014
, “
Effects of Non-Uniform Heating on the Location and Magnitude of Critical Heat Flux in a Microchannel Heat Sink
,”
Int. J. Micro-Nano Scale Transp.
,
5
(
3
), pp.
95
108
.
19.
Jajja
,
S. A.
,
Zada
,
K. R.
, and
Fronk
,
B. M.
,
2019
, “
Experimental Investigation of Supercritical Carbon Dioxide in Horizontal Microchannels With Non-Uniform Heat Flux Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
130
, pp.
304
319
.
20.
Yang
,
J.
,
Groeneveld
,
D. C.
,
Leung
,
L. K. H.
,
Cheng
,
S. C.
, and
El Nakla
,
M. A.
,
2006
, “
An Experimental and Analytical Study of the Effect of Axial Power Profile on CHF
,”
Nucl. Eng. Des.
,
236
(
13
), pp.
1384
1395
.
21.
Esfahani
,
J. A.
, and
Shahabi
,
P. B.
,
2010
, “
Effect of Non-Uniform Heating on Entropy Generation for the Laminar Developing Pipe Flow of a High Prandtl Number Fluid
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2087
2097
.
22.
Huh
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2007
, “
Flow Pattern Transition Instability During Flow Boiling in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1049
1060
.
23.
Del Col
,
D.
, and
Bortolin
,
S.
,
2012
, “
Investigation of Dryout During Flow Boiling in a Single Microchannel Under Non-Uniform Axial Heat Flux
,”
Int. J. Therm. Sci.
,
57
, pp.
25
36
.
24.
Hajmohammadi
,
M. R.
,
Poozesh
,
S.
,
Rahmani
,
M.
, and
Campo
,
A.
,
2013
, “
Heat Transfer Improvement Due to the Imposition of Non-Uniform Wall Heating for In-Tube Laminar Forced Convection
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
268
277
.
25.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Lanimar Flow Forced Convection in Duts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
You do not currently have access to this content.