The thermal behavior of a compact mini-loop thermosyphon is experimentally studied at different filling ratios (20%, 30%, 40%, 50%, and 70%) and tilt angles (0 deg, 30 deg, 45 deg, 60 deg, and 90 deg) for the heat loads of 20–300 W using distilled water as the heat pipe fluid. The presence of microfins at the evaporator results in an average decrease of 37.4% and 15.3% in thermal resistance and evaporator wall temperature, respectively, compared with the evaporator with a plain surface. Both filling ratio (FR) and tilt angle influence the heat transfer performance significantly, and the best performance of the mini-loop thermosyphon is obtained at their optimum values. The thermal resistance and thermal efficiency values lie in the ranges of 0.73–0.076 K/W and 65–88.3% for different filling ratios and tilt angles. Similarly, evaporator heat transfer coefficient and evaporator wall temperature show significant variation with changes in filling ratio and tilt angle. A combination of the optimum filling ratio and tilt angle shows a lowest thermal resistance of 0.076 K/W and a highest evaporator wall temperature of 68.6 °C, which are obtained at 300 W. The experimental results recommend the use of mini-loop thermosyphon at an optimum filling ratio for electronics cooling applications, which have a heat dissipation of 20–300 W.

References

References
1.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Cassie
,
C. F. M.
, and
Wongwises
,
S.
,
2017
, “
Performance of Cylindrical and Flattened Heat Pipes at Various Inclinations Including Repeatability in Anti-Gravity—A Comparative Study
,”
Appl. Therm. Eng.
,
122
, pp.
685
696
.
2.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Dau
,
M. J.
, and
Wongwises
,
S.
,
2017
, “
Entropy Generation Analysis of a Miniature Loop Heat Pipe With Graphene-Water Nanofluid: Thermodynamics Model and Experimental Study
,”
Int. J. Heat Mass Transf.
,
106
, pp.
407
421
.
3.
Na
,
M. K.
,
Jeon
,
J. S.
,
Kwak
,
H. Y.
, and
Nam
,
S. S.
,
2001
, “
Experimental Study on Closed-Loop Two-Phase Thermosyphon Devices for Cooling MCMs
,”
Heat Transf. Eng.
,
22
(
2
), pp.
29
39
.
4.
Gima
,
S.
,
Nagata
,
T.
,
Zhang
,
X.
, and
Fujii
,
M.
,
2005
, “
Experimental Study on CPU Cooling System of Closed-Loop Two-Phase Thermosyphon
,”
Heat Transf.—Asian Res.
,
34
(
3
), pp.
147
159
.
5.
Sarno
,
C.
,
Tantolin
,
C.
,
Hodot
,
R.
,
Maydanik
,
Y.
, and
Vershinin
,
S.
,
2013
, “
Loop Thermosyphon Thermal Management of the Avionics of an In-Flight Entertainment System
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
764
769
.
6.
Khrustalev
,
D.
,
2002
, “
Loop Thermosyphons for Cooling of Electronics
,”
18th IEEE SEMI-THERM Symposium
,
San Jose, CA
,
Mar. 12–14
,
IEEE
,
New York
, pp.
145
150
.
7.
Chang
,
C. C.
,
Kuo
,
S. C.
,
Ke
,
M. T.
, and
Chen
,
S. L.
,
2010
, “
Two-Phase Closed-Loop Thermosyphon for Electronic Cooling
,”
Exp. Heat Transf.
,
23
(
2
), pp.
144
156
.
8.
Chehade
,
A. A.
,
Gualous
,
H. L.
,
Masson
,
S. L.
,
Victor
,
I.
, and
Damaj
,
N. A.
,
2014
, “
Experimental Investigation of Thermosyphon Loop Thermal Performance
,”
Energy Convers. Manage.
,
84
, pp.
671
680
.
9.
Franco
,
A.
, and
Filippeschi
,
S.
,
2012
, “
Experimental Analysis of Closed Loop Two Phase Thermosyphon (CLTPT) for Energy Systems
,”
Microgravity Sci. Technol.
,
24
, pp.
165
179
.
10.
Zhang
,
P.
,
Wang
,
B.
,
Shi
,
W.
, and
Li
,
X.
,
2015
, “
Experimental Investigation on Two-Phase Thermosyphon Loop With Partially Liquid-Filled Downcomer
,”
Appl. Energy
,
160
, pp.
10
17
.
11.
Gualous
,
H. L.
,
Masson
,
S. L.
, and
Chahed
,
A.
,
2017
, “
An Experimental Study of Evaporation and Condensation Heat Transfer Coefficients for Looped Thermosyphon
,”
Appl. Therm. Eng.
,
110
, pp.
931
940
.
12.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids-An Overview
,”
Renew. Sustain. Energy Rev.
,
14
(
2
), pp.
629
641
.
13.
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
, and
Wongwises
,
S.
,
2013
, “
Heat Transfer Performance of Screen Mesh Wick Heat Pipes Using Silver-Water Nanofluid
,”
Int. J. Heat Mass Transf.
,
60
, pp.
201
209
.
14.
Kumaresan
,
G.
,
Venkatachalapathy
,
S.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2014
, “
Comparative Study on Heat Transfer Characteristics of Sintered and Mesh Wick Heat Pipes Using CuO Nanofluids
,”
Int. Commun. Heat Mass Transf.
,
57
, pp.
208
215
.
15.
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
, and
Wongwises
,
S.
,
2013
, “
Operational Limitations of Heat Pipes With Silver-Water Nanofluids
,”
ASME J. Heat Transf.
,
135
(
11
), p.
111011
.
16.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Rajesh
,
S.
, and
Wongwises
,
S.
,
2017
, “
Effect of Nanoparticle Coating on the Performance of a Miniature Loop Heat Pipe for Electronics Cooling Applications
,”
ASME J. Heat Transf.
,
140
(
2
), p.
022401
.
17.
Ninolin
,
E.
,
Lazarus
,
G. A.
, and
Ramachandran
,
K.
,
2016
, “
Thermal Performance of a Compact Loop Heat Pipe With Silver-Water Nanofluid
,”
Appl. Mech. Mater.
,
852
, pp.
666
674
.
18.
Asirvatham
,
L. G.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2011
, “
Convective Heat Transfer of Nanofluids With Correlations
,”
Particuology
,
9
(
6
), pp.
626
631
.
19.
Solomon
,
A. B.
,
Roshan
,
R.
,
Vincent
,
W.
,
Karthikeyan
,
V. K.
, and
Asirvatham
,
L. G.
,
2015
, “
Heat Transfer Performance of an Anodized Two-Phase Closed Thermosyphon With Refrigerant as Working Fluid
,”
Int. J. Heat Mass Transf.
,
82
, pp.
521
529
.
20.
Asirvatham
,
L. G.
,
Wongwises
,
S.
, and
Babu
,
J.
,
2015
, “
Heat Transfer Performance of a Glass Thermosyphon Using Graphene-Acetone Nanofluid
,”
ASME J. Heat Transf.
,
137
(
11
), p.
111502
.
21.
Kumaresan
,
G.
,
Venkatachalapathy
,
S.
, and
Asirvatham
,
L. G.
,
2014
, “
Experimental Investigation on Enhancement in Thermal Characteristics of Sintered Wick Heat Pipe Using CuO Nanofluids
,”
Int. J. Heat Mass Transf.
,
72
, pp.
507
516
.
22.
Ramachandran
,
R.
,
Ganesan
,
K.
,
Rajkumar
,
M. R.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2016
, “
Comparative Study of the Effect of Hybrid Nanoparticle on the Thermal Performance of Cylindrical Screen Mesh Heat Pipe
,”
Int. Commun. Heat Mass Transf.
,
76
, pp.
294
300
.
23.
Solomon
,
A. B.
,
Ramachandran
,
K.
,
Asirvatham
,
L. G.
, and
Pillai
,
B. C.
,
2014
, “
Numerical Analysis of a Screen Mesh Wick Heat Pipe With Cu/Water Nanofluid
,”
Int. J. Heat Mass Transf.
,
75
, pp.
523
533
.
24.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Ravindran
,
V.
, and
Wongwises
,
S.
,
2016
, “
Effect of Filling Ratio on the Performance of a Novel Miniature Loop Heat Pipe Having Different Diameter Transport Lines
,”
Appl. Therm. Eng.
,
106
, pp.
588
600
.
25.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Ravindran
,
V.
, and
Wongwises
,
S.
,
2016
, “
Thermal Performance of Miniature Loop Heat Pipe With Graphene-Water Nanofluid
,”
Int. J. Heat Mass Transf.
,
93
, pp.
957
968
.
26.
Agostini
,
F.
,
Habert
,
M.
,
Molitor
,
F.
,
Flüeckiger
,
R.
,
Kaufmann
,
L.
,
Bergamini
,
A.
,
Rossi
,
M.
, and
Besana
,
S.
,
2014
, “
Double-Loop Thermosyphon for Electric Components Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
4
(
2
), pp.
223
231
.
27.
Khodabandeh
,
R.
,
2004
, “
Thermal Performance of a Closed Advanced Two-Phase Thermosyphon Loop for Cooling of Radio Base Stations at Different Operating Conditions
,”
Appl. Therm. Eng.
,
24
(
17–18
), pp.
2643
2655
.
28.
Chehade
,
A.
,
Gualous
,
H. L.
,
Masson
,
S. L.
, and
Lepinasse
,
E.
,
2015
, “
Experimental Investigations and Modeling of a Loop Thermosyphon for Cooling With Zero Electrical Consumption
,”
Appl. Therm. Eng.
,
87
, pp.
559
573
.
29.
Mameli
,
M.
,
Mangini
,
D.
,
Vanoli
,
G. F. T.
,
Araneo
,
L.
,
Filippeschi
,
S.
, and
Marengo
,
M.
,
2016
, “
Advanced Multi-Evaporator Loop Thermosyphon
,”
Energy
,
112
, pp.
562
573
.
30.
He
,
H.
,
Furusato
,
K.
,
Yamada
,
M.
,
Shen
,
B.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2017
, “
Efficiency Enhancement of a Loop Thermosyphon on a Mixed-Wettability Evaporator Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1245
1254
.
31.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Rajesh
,
S.
, and
Wongwises
,
S.
,
2018
, “
Thermal Management of Electronic Devices Using Combined Effects of Nanoparticle Coating and Graphene–Water Nanofluid in a Miniature Loop Heat Pipe
,”
IEEE Trans. Compon. Packag. Technol.
,
8
(
7
), pp.
1241
1253
.
You do not currently have access to this content.