The heat transfer in a pin finned duct is augmented by the protrusion in this study. The realizable k–ε turbulence model coupled with the enhanced wall function is used to obtain the flow structure and heat transfer characteristics. Six different rotational numbers (Ro = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) and three different protrusion locations have been introduced. The pin fins and protrusions are placed on a simplified three-dimensional rectangular duct. Numerical results reveal that the Nusselt number in the pin finned channel has remarkable increase after adoption of the protrusions. In addition, the protrusion location and the rotational number have significant influence on the heat transfer distribution. The high rotational number is in favor of heat transfer enhancement on the endwall surface. Furthermore, the highest Nusselt number is occurred where protrusion is near the pin fin windward side.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton
.
2.
Huang
,
S.
,
Maltson
,
J. D.
, and
Yan
,
Y. Y.
,
2016
, “
Experimental Study on Heat Transfer Improvement Structures With Staggered Transverse Elongated Pedestal Array
,”
Int. J. Heat Mass Transf.
97
, pp.
502
510
.
3.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2005
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.
4.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-63205.
5.
Luo
,
L.
,
Du
,
W.
,
Wang
,
S.
,
Wu
,
W.
, and
Zhang
,
X.
,
2019
, “
Multi-Objective Optimization of the Dimple/Protrusion Channel With Pin Fins for Heat Transfer Enhancement
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
2
), pp.
790
813
.
6.
Fernandes
,
R.
,
2016
,
Investigation of Pin Fin Cooling Ducts for Applications in Gas Turbines
,
Embry-Riddle Aeronautical University
,
Daytona Beach, FL
.
7.
Taslim
,
M. E.
, and
Xue
,
F.
,
2017
, “
Crossover Jet Impingement in a Rib-Roughened Trailing-Edge Cooling Duct
,”
ASME J. Turbomach.
,
139
(
7
), p.
071007
.
8.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
9.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotat. Mach.
2013
, pp.
275653
.
10.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
11.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
129
(
2
), pp.
193
201
.
12.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2004
, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transf.
,
47
(
8–9
), pp.
1731
1743
.
13.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
14.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Quebec
,
May 14–17
,
ASME
Paper No. GT2007-28306.
15.
Sakanovaa
,
A.
, and
Tsengb
,
K. J.
,
2018
, “
Comparison of Pin-Fin and Finned Shape Heat Sink for Power Electronics in Future Aircraft
,”
Appl. Therm. Eng.
,
136
(
3
), pp.
364
374
.
16.
Siw
,
S. C.
,
Fradeneck
,
A. D.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2015
, “
The Effects of Different Pin-Fin Arrays on Heat Transfer and Pressure Loss in a Narrow Duct
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec
,
June 15–19
,
ASME
Paper No. GT2015-43855.
17.
Jadhav
,
R. S.
, and
Balaji
,
C.
,
2016
, “
Fluid Flow and Heat Transfer Characteristics of a Vertical Channel With Detached Pin-Fin Arrays Arranged in Staggered Manner on Two Opposite Endwalls
,”
Int. J. Therm. Sci.
105
, pp.
57
74
.
18.
Pandit
,
J.
,
Thompson
,
M.
,
Ekkad
,
S. V.
, and
Huxtable
,
S. T.
,
2014
, “
Effect of Pin Fin to Channel Height Ratio and Pin Fin Geometry on Heat Transfer Performance for Flow in Rectangular Channels
,”
Int. J. Heat Mass Transf.
77
, pp.
359
368
.
19.
Rao
,
Y.
,
Xu
,
Y.
, and
Wan
,
C.
,
2012
, “
An Experimental and Numerical Study of Flow and Heat Transfer in Channels With Pin Fin-Dimple and Pin Fin Arrays
,”
Exp. Therm. Fluid Sci.
38
, pp.
237
247
.
20.
Luo
,
L.
,
Wang
,
C.
,
Wang
,
L.
,
Sundén
,
B.
, and
Wang
,
S.
,
2016
, “
Heat Transfer and Friction Factor Performance in a Pin Fin Wedge Duct With Different Dimple Arrangements
,”
Numer. Heat Transf. Part A Appl.
,
69
(
2
), pp.
209
226
.
21.
Xie
,
Y.
,
Shi
,
D.
, and
Shen
,
Z.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer and Friction Performance for Turbine Blade Tip Cap With Combined Pin-Fin-Dimple/Protrusion Structure
,”
Int. J. Heat Mass Transf.
104
, pp.
1120
1134
.
22.
Hwang
,
S. D.
,
Kwon
,
H. G.
, and
Cho
,
H. H.
,
2008
, “
Heat Transfer With Dimple/Protrusion Arrays in a Rectangular Duct With a Low Reynolds Number Range
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
916
926
.
23.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation Investigation of Flow and Heat Transfer in a Duct With Dimples and Protrusions
,”
ASME J. Turbomach.
130
(
4
), pp.
041016
.
24.
Luo
,
L.
,
Du
,
W.
,
Wen
,
F.
,
Wang
,
S.
, and
Zhao
,
Z.
,
2017
, “
Converge Angles Effect on Heat Transfer Characteristics in a Wedge Duct With Dimple/Protrusion
,”
Heat Transf. Res.
48
(
14
), pp.
1237
1262
.
25.
Ebrahimi
,
A.
, and
Naranjani
,
B.
,
2016
, “
An Investigation on Thermo-Hydraulic Performance of a Flat-Plate Channel With Pyramidal Protrusions
,”
Appl. Therm. Eng.
106
, pp.
316
324
.
26.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2019
, “
Flow Structure and Heat Transfer Characteristics in a 90-Deg Turned Pin Fined Duct With Different Dimple/Protrusion Depths
,”
Appl. Therm. Eng.
146
, pp.
826
842
.
27.
Luo
,
L.
,
Du
,
W.
,
Wang
,
S.
,
Wu
,
W.
, and
Zhang
,
X.
,
2018
, “
Multi-Objective Optimization of the Dimple/Protrusion Duct With Pin Fins for Heat Transfer Enhancement
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
2
), pp.
790
813
.
28.
Willett
,
F. T.
, and
Bergles
,
A. E.
,
2002
, “
Heat Transfer in Rotating Narrow Rectangular Pin-Fin Ducts
,”
Exp. Therm. Fluid Sci.
,
25
(
7
), pp.
573
582
.
29.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J.-C.
,
2004
, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins
,”
J. Thermophys. Heat Transf.
,
18
(
2
), pp.
263
272
.
30.
Huang
,
S. C.
,
Wang
,
C. C.
, and
Liu
,
Y. H.
,
2017
, “
Heat Transfer Measurement in a Rotating Cooling Channel With Staggered and Inline Pin-Fin Arrays Using Liquid Crystal and Stroboscopy
,”
Int. J. Heat Mass Transf.
115
, pp.
364
376
.
31.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2018
, “
Effect of the Dimple Location and Rotating Number on the Heat Transfer and Flow Structure in a Pin Finned Channel
,”
Int. J. Heat Mass Transf.
127
, pp.
111
129
.
32.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2010
, “
Effect of Coriolis Forces in a Rotating Channel With Dimples and Protrusions
,”
Int. J. Heat Fluid Flow
,
31
(
1
), pp.
1
18
.
33.
Chyu
,
M. K.
,
Cho
,
H. H.
,
Lee
,
D. H.
,
Kim
,
K. M.
, and
Park
,
J. S.
,
2008
, “
Heat Transfer on Rotating Duct With Various Heights of Pin-Fin
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin
,
June 9–13
,
ASME
Paper No. GT2008-50783.
34.
Xie
,
Y.
,
Qu
,
H.
, and
Zhang
,
D.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in Rectangular Channel With Teardrop Dimple/Protrusion
,”
Int. J. Heat Mass Transf.
84
, pp.
486
496
.
35.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
8th Revised and Enlarged ed.
,
Springer
,
Berlin
, pp.
70
73
.
36.
Rao
,
Y.
,
Wan
,
C.
, and
Xu
,
Y.
,
2012
, “
An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
Int. J. Heat Mass Transf.
,
55
(
23–24
), pp.
6723
6733
.
37.
Chang
,
S. W.
,
Yang
,
T. L.
,
Hong
,
G. F.
, and
Liou
,
T.-M.
,
2010
, “
Heat Transfer in Radially Rotating Pin-Fin Duct at High Rotation Numbers
,”
ASME J. Turbomach.
,
132
(
2
), p.
021019
.
38.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR = 1:2) Under Rotating and Stationary Conditions
,”
Int. J. Heat Mass Transf.
,
113
, pp.
384
398
.
39.
Du
,
W.
,
Luo
,
L.
, and
Wang
,
S.
,
2018
, “
Effect of the Dimple/Protrusion Depth on Flow Structure and Heat Transfer in a Rotating Duct With Pin Fin
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo
,
June 11–15
,
ASME
Paper GT2018-76158.
40.
ANSYS FLUENT
,
2013
, “Reference Guide, Relaease15.”
41.
Luo
,
L.
,
Zhao
,
Z.
,
Kan
,
X.
,
Qiu
,
D.
,
Wang
,
S.
, and
Wang
,
Z.
,
2019
, “
On the Heat Transfer and Flow Structures Characteristics of Turbine Blade Tip Underside With Dirt Purge Holes at Different Locations by Using Topological Analysis
,”
ASME J. Turbomach.
,
141
(
7
), pp.
1
24
.
You do not currently have access to this content.