The lean combustion chamber of low NOx emission engines has a short distance between combustion outlet and nozzle guide vanes (NGVs), with strong swirlers located upstream of the turbine inlet to from steady circulation in the combustion region. Although the lean combustion design benefits emission control, it complicates the turbine’s aerodynamics and heat transfer. The strong swirling flow will influence the near-wall flow field where film cooling acts. This research investigates the influence of inlet swirl on the film cooling of cascades. The test cascades are a 1.95 scale model based on the GE-E3 profile, with an inlet Mach number of 0.1 and Reynolds number of 1.48 × 105. Film cooling effectiveness is measured with pressure-sensitive paint (PSP) technology, with nitrogen simulating coolant at a density ratio of near to 1.0. Two neighboring passages are investigated simultaneously, so that pressure and suction side the film cooling effectiveness can be compared. The inlet swirl is produced by a swirler placed upstream, near the inlet, with five positions along the pitchwise direction. These are as follows: blade 1 aligned, passage 1–2 aligned, blade 2 aligned, passage 2–3 aligned and blade 3 aligned. According to the experimental results, the near-hub region is strongly influenced by inlet swirl, where the averaged film cooling effectiveness can differ by up to 12% between the neighboring blades. At the spanwise location Z/Span = 0.7, when the inlet swirl is moved from blade 1 aligned (position 5) to blade 2 aligned (position 3), the film cooling effectiveness in a small area near the endwall can change by up to 100%.

References

References
1.
Stitzel
,
S.
, and
Thole
,
K. A.
,
2004
, “
Flow Field Computations of Combustor-Turbine Interactions Relevant to a Gas Turbine Engine
,”
ASME J. Turbomach.
,
126
(
1
), pp.
122
129
.
2.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
.
3.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Blade1nd End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
5
), p.
031901-1/13
.
4.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2012
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach
,
135
(
4
), p.
041005
.
5.
Krichbaum
,
A.
,
Werschnik
,
H.
,
Wilhelm
,
M.
,
Schiffer
,
H. P.
, and
Lehmann
,
K.
,
2015
, “
A Large Scale Turbine Test Rig for the Investigation of High Pressure Turbine Aerodynamics and Heat Transfer With Variable Inflow Conditions
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
, ASME Paper No. GT2015-43261.
6.
Werschnik
,
H.
,
Hilgert
,
J.
,
Bruschewski
,
M.
, and
Schiffer
,
H. P.
,
2016
, “
Combustor-Turbine Aerothermal Interaction in an Axial Turbine: Influence of Varied Inflow Conditions on Endwall Heat Transfer and Film Cooling Effectiveness
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2016-57171.
7.
Paul
,
F. B.
,
Andy
,
D. S.
, and
Povey
,
T.
,
2013
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1
), p.
011002
.
8.
Qureshi
,
I.
,
Andy
,
D. S.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
9.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propuls Power
,
2
(
3
), p.
12
.
10.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1½ Stage Axial Turbine
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
, ASME Paper No. GT2014-26716.
11.
Hilgert
,
J.
,
Bruschewski
,
M.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2017
, “
Numerical Studies on Combustor-Turbine Interaction at the Large Scale Turbine Rig (LSTR)
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2017-64504.
12.
Gao
,
Z.
,
Narzary
,
D. P.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2008
, “
Full-Coverage Film Cooling for a Turbine Blade With Axial-Shaped Holes
,”
J. Thermophys. Heat Transf.
,
22
(
1
), pp.
50
61
.
13.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.
14.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME 2005 Summer Heat Transfer Conference
, ASME Paper No. HT2005-72363.
15.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2008
, “
Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Axial Shaped Holes
,”
Int. J. Heat Mass Transf.
,
51
(
9–10
), pp.
2139
2152
.
16.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2012
, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Heat Transf.
,
134
(
8
), p.
081701
.
17.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
18.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2009
, “
Effect of Inlet Flow Angle on Gas Turbine Blade Tip Film Cooling
,”
ASME J. Turbomach.
,
131
(
3
), p.
031005
.
19.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transf.
1
(
1
), p.
013001
.
20.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
21.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
22.
Zhang
,
Y.
,
Li
,
Y.
, and
Yuan
,
X.
,
2016
, “
Effects of Inlet Swirl on Leading Edge Film Cooling in Double-Passage Turbine Linear Cascades
,”
The 8th Asian Joint Conference on Propulsion and Power
,
Takamatsu, Japan
,
Paper No. AJCPP2016-181
.
You do not currently have access to this content.