This study compares two numerical strategies for modeling flow and heat transfer through mini- and microchannel heatsinks, the unit cell approximation, and the full 3D model, with the objective of validating the former approach. Conjugate heat transfer and laminar flow through a 2 × 2 cm2 copper–water heatsink are modeled using the finite element package COMSOL Multiphysics 5.0. Parametric studies showed that as the heatsink channels’ widths were reduced, and the total number of channels increased, temperature and pressure predictions from both models converged to similar values. Relative differences as low as 5.4% and 1.6% were attained at a channel width of 0.25 mm for maximum wall temperature and channel pressure drop, respectively. Due to its computational efficiency and tendency to conservatively overpredict temperatures relative to the full 3D method, the unit cell approximation is recommended for parametric design of heatsinks with channels’ widths smaller than 0.5 mm, although this condition only holds for the given heatsink design. The unit cell method is then used to design an optimal heatsink for server liquid cooling applications. The heatsink has been fabricated and tested experimentally, and its thermal performance is compared with numerical predictions. The unit cell method underestimated the maximum wall temperature relative to experimental results by 3.0–14.5% as the flowrate rose from 0.3 to 1.5 gal/min (1.1–5.7 l/min).

References

References
1.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2014
, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities
,”
Renew. Sustain. Energy Rev.
,
31
, pp.
622
638
.
2.
Zhang
,
H.
,
Shao
,
S.
,
Xu
,
H.
,
Zou
,
H.
, and
Tian
,
C.
,
2014
, “
Free Cooling of Data Centers: A Review
,”
Renew. Sustain. Energy Rev.
,
35
, pp.
171
182
.
3.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.
4.
Zimmermann
,
S.
,
Tiwari
,
M. K.
,
Meijer
,
I.
,
Paredes
,
S.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2012
, “
Hot Water Cooled Electronics: Exergy Analysis and Waste Heat Reuse Feasibility
,”
Int. J. Heat Mass Transf.
,
55
, pp.
6391
6399
.
5.
Iyengar
,
M.
,
David
,
M.
,
Parida
,
P.
,
Kamath
,
V.
,
Kochuparambil
,
B.
,
Graybill
,
D.
,
Schultz
,
M.
,
Gaynes
,
M.
,
Simons
,
R. E.
,
Schmidt
,
R. R.
, and
Chainer
,
T.
,
2012
, “
Server Liquid Cooling With Chiller-Less Data Center Design to Enable Significant Energy Savings
,”
28th IEEE SEMI-THERM Symposium
,
San Jose, CA
,
March 18–22
, pp.
212
223
.
6.
Zimmermann
,
S.
,
Meijer
,
I.
,
Tiwari
,
M. K.
,
Paredes
,
S.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2012
, “
Aquasar: A Hot Water Cooled Data Center With Direct Energy Reuse
,”
Energy
,
43
, pp.
237
245
.
7.
Zhai
,
Y. L.
,
Xia
,
G. D.
,
Liu
,
X. F.
, and
Li
,
Y. F.
,
2015
, “
Exergy Analysis and Performance Evaluation of Flow and Heat Transfer in Different Micro Heat Sinks With Complex Structure
,”
Int. J. Heat Mass Transf.
,
84
, pp.
293
303
.
8.
Yue
,
Y.
,
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Analysis of Performances of a Manifold Microchannel Heat Sink With Nanofluids
,”
Int. J. Therm. Sci.
,
89
, pp.
305
313
.
9.
Xie
,
G.
,
Shen
,
H.
, and
Wang
,
C.-C.
,
2015
, “
Parametric Study on Thermal Performance of Microchannel Heat Sinks With Internal Vertical Y-Shaped Bifurcations
,”
Int. J. Heat Mass Transf.
,
90
, pp.
948
958
.
10.
Wong
,
K.
, and
Lee
,
J.-H.
,
2015
, “
Investigation of Thermal Performance of Microchannel Heat Sink With Triangular Ribs in the Transverse Microchambers
,”
Int. Commun. Heat Mass Transf.
,
65
, pp.
103
110
.
11.
Wang
,
G.
,
Niu
,
D.
,
Xie
,
F.
,
Wang
,
Y.
,
Zhao
,
X.
, and
Ding
,
G.
,
2015
, “
Experimental and Numerical Investigation of a Microchannel Heat Sink (MCHS) With Micro-Scale Ribs and Grooves for Chip Cooling
,”
Appl. Therm. Eng.
,
85
, pp.
61
70
.
12.
Sakanova
,
A.
,
Keian
,
C. C.
, and
Zhao
,
J.
,
2015
, “
Performance Improvements of Microchannel Heat Sink Using Wavy Channel and Nanofluids
,”
Int. J. Heat Mass Transf.
,
89
, pp.
59
74
.
13.
Leng
,
C.
,
Wang
,
X.-D.
,
Wang
,
T.-H.
, and
Yan
,
W.-M.
,
2015
, “
Multi-Parameter Optimization of Flow and Heat Transfer for a Novel Double-Layered Microchannel Heat Sink
,”
Int. J. Heat Mass Transf.
,
84
, pp.
359
369
.
14.
Leng
,
C.
,
Wang
,
X.-D.
,
Wang
,
T.-H.
, and
Yan
,
W.-M.
,
2015
, “
Optimization of Thermal Resistance and Bottom Wall Temperature Uniformity for Double-Layered Microchannel Heat Sink
,”
Energy Convers. Manage.
,
93
, pp.
141
150
.
15.
Leng
,
C.
,
Wang
,
X.-D.
, and
Wang
,
T.-H.
,
2015
, “
An Improved Design of Double-Layered Microchannel Heat Sink With Truncated Top Channels
,”
Appl. Therm. Eng.
,
79
, pp.
54
62
.
16.
Kuppusamy
,
N. R.
,
Ghazali
,
N. N. N.
,
Saidur
,
R.
, and
Niza
,
M. E.
,
2015
, “
Optimum Design of Triangular Shaped Micro Mixer in Micro Channel Heat Sink
,”
Int. J. Heat Mass Transf.
,
91
, pp.
52
62
.
17.
Karathanassis
,
I. K.
,
Papanicolaou
,
E.
,
Belessiotis
,
V.
, and
Bergeles
,
G. C.
,
2015
, “
Experimental and Numerical Evaluation of an Elongated Plate-Fin Heat Sink With Three Sections of Stepwise Varying Channel Width
,”
Int. J. Heat Mass Transf.
,
84
, pp.
16
34
.
18.
Ghale
,
Z. Y.
,
Haghshenasfard
,
M.
, and
Esfahany
,
M. N.
,
2015
, “
Investigation of Nanofluids Heat Transfer in a Ribbed Microchannel Heat Sink Using Single-Phase and Multiphase CFD Models
,”
Int. Commun. Heat Mass Transf.
,
68
, pp.
122
129
.
19.
Chuan
,
L.
,
Wang
,
X.-D.
,
Wang
,
T.-H.
, and
Yan
,
W.-M.
,
2015
, “
Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept
,”
Int. Commun. Heat Mass Transf.
,
65
, pp.
52
57
.
20.
Xia
,
G. D.
,
Jiang
,
J.
,
Wang
,
J.
,
Zhai
,
Y. L.
, and
Ma
,
D. D.
,
2015
, “
Effects of Different Geometric Structures on Fluid Flow and Heat Transfer Performance in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transf.
,
80
, pp.
439
447
.
21.
Gong
,
L.
,
Zhao
,
J.
, and
Huang
,
S.
,
2015
, “
Numerical Study on Layout of Micro-Channel Heat Sink for Thermal Management of Electronic Devices
,”
Appl. Therm. Eng.
,
88
, pp.
480
490
.
22.
Liu
,
X.
, and
Yu
,
J.
,
2016
, “
Numerical Study on Performances of Mini-Channel Heat Sinks With Non-Uniform Inlets
,”
Appl. Therm. Eng.
,
93
, pp.
856
864
.
23.
Kumaraguruparan
,
G.
,
Kumaran
,
R. M.
,
Sornakumar
,
T.
, and
Sundararajan
,
T.
,
2011
, “
A Numerical and Experimental Investigation of Flow Maldistribution in a Micro-Channel Heat Sink
,”
Int. Commun. Heat Mass Transf.
,
38
, pp.
1349
1353
.
24.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
Viscous Dissipation Effects in Microtubes and Microchannels
,”
Int. J. Heat Mass Transf.
,
47
, pp.
3159
3169
.
25.
Morini
,
G. L.
,
2005
, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transf.
,
48
, pp.
3637
3647
.
26.
ASHRAE
,
2012
,
Datacom Equipment Power Trends and Cooling Applications
,
2nd ed
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
27.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2018
, “
Experimental Evaluation of a Thermal Contact Liquid Cooling System for Server Electronics
,”
Appl. Therm. Eng.
,
129
, pp.
1010
1025
.
You do not currently have access to this content.