The evaporation of sessile drop has a wide range of application that includes printing, washing, cooling, and coating. Due to the complex nature of drop evaporation process, this phenomenon is reliant on several parameters such as ambiance and physiochemical properties of liquid and surface. In the present study, a mathematical model of water droplet evaporation on an engineered aluminum surface is developed. Experimental study is carried out for the validation of code. The data obtained from the simulation is validated against the data obtained from an experimental study as well as the data available in the literature and good agreement was found among them. Post-validation, the effect of surface wettability and environment conditions on a droplet evaporation rate is estimated. It is inferred from the outcomes that the temperature at the apex of the drop varies linearly with the increasing relative humidity. Droplet volume has a significant impact on the evaporation rate and comparatively higher evaporative flux for a smaller volume of the drop with large contact angles. This unveils the possibility of achieving the required evaporation rate by controlling surface wettability and relative humidity conditions near the drop.

References

References
1.
Deegan
,
R. D.
,
Bakajin
,
O.
,
Dupont
,
T. F.
,
Huber
,
G.
,
Nagel
,
S. R.
, and
Witten
,
T. A.
,
1997
, “
Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops
,”
Nature
,
389
, pp.
827
829
.
2.
Dugas
,
V.
,
Broutin
,
J.
, and
Souteyrand
,
E.
,
2005
, “
Droplet Evaporation Study Applied to DNA Chip Manufacturing
,”
Langmuir
,
21
(
20
), pp.
9130
9136
.
3.
Sikarwar
,
B. S.
,
Roy
,
M.
,
Ranjan
,
P.
, and
Goyal
,
A.
,
2016
, “
Automatic Disease Screening Method Using Image Processing for Dried Blood Microfluidic Drop Stain Pattern Recognition
,”
J. Med. Eng. Technol.
,
40
(
5
), pp.
245
254
.
4.
Attinger
,
D.
,
Moore
,
C.
,
Donaldson
,
A.
,
Jafari
,
A.
, and
Stone
,
H. A.
,
2013
, “
Fluid Dynamics Topics in Bloodstain Pattern Analysis: Comparative Review and Research Opportunities
,”
Forensic Sci. Int.
,
231
(
1–3
), pp.
375
396
.
5.
Heim
,
T.
,
Preuss
,
S.
,
Gerstmayer
,
B.
,
Bosio
,
A.
, and
Blossey
,
R.
,
2005
, “
Deposition From a Drop: Morphologies of Unspecifically Bound DNA
,”
J. Phys. Condens. Matter
,
17
(
9
), pp.
S703
S716
.
6.
Wang
,
D.
,
Liu
,
S.
,
Trummer
,
B. J.
,
Deng
,
C.
, and
Wang
,
A.
,
2002
, “
Carbohydrate Microarrays for the Recognition of Cross-Reactive Molecular Markers of Microbes and Host Cells
,”
Nat. Biotechnol.
,
20
, pp.
275
281
.
7.
Madden
,
L. C.
,
Tomlinson
,
A.
, and
Simmons
,
P. A.
,
2013
, “
Effect of Humidity Variations in a Controlled Environment Chamber on Tear Evaporation After Dry Eye Therapy
,”
Eye Contact Lens
,
39
(
2
), pp.
169
174
.
8.
Attinger
,
D.
,
Frankiewicz
,
C.
,
Betz
,
A. R.
, and
Schutzius
,
T. M.
,
2014
,
Surface Engineering for Phase Change Heat Transfer: A Review
,
MRS Energy Sustain.
,
1
, p.
E4
.
9.
Erbil
,
H. Y.
,
2012
, “
Evaporation of Pure Liquid Sessile and Spherical Suspended Drops: A Review
,”
Adv. Colloid Interface Sci.
,
170
(
1–2
), pp.
67
86
.
10.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.
11.
Gatapova
,
Y. E.
,
Semenov
,
A. A.
,
Zaitsev
,
D. V.
, and
Kabov
,
O. A.
,
2014
, “
Evaporation of a Sessile Water Drop on a Heated Surface With Controlled Wettability
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
441
, pp.
776
785
.
12.
Bouchenna
,
C.
,
Saada
,
M. A.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2017
, “
Generalized Formulation for Evaporation Rate and Flow Pattern Prediction Inside an Evaporating Pinned Sessile Drop
,”
Int. J. Heat Mass Transf.
,
109
, pp.
482
500
.
13.
Nguyen
,
T. A. H.
,
Nguyen
,
A. V.
,
Hampton
,
M. A.
,
Xu
,
J. P.
,
Huang
,
L.
, and
Rudolph
,
V.
,
2012
, “
Theoretical and Experimental Analysis of Droplet Evaporation on Solid Surfaces
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
522
529
.
14.
Shin
,
D. H.
,
Lee
,
S. H.
,
Jung
,
J.
, and
Yoo
,
J. Y.
,
2009
, “
Evaporating Characteristics of Sessile Droplet on Hydrophobic and Hydrophilic Surfaces
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
1350
1353
.
15.
Lee
,
C. Y.
,
Zhang
,
B. J.
,
Park
,
J.
, and
Kim
,
K. J.
,
2012
, “
Water Droplet Evaporation on Cu-Based Hydrophobic Surfaces With Nano- and Micro-Structures
,”
Int. J. Heat Mass Transf.
,
55
(
7–8
), pp.
2151
2159
.
16.
Maatar
,
A.
,
Chikh
,
S.
,
Ait Saada
,
M.
, and
Tadrist
,
L.
,
2015
, “
Transient Effects on Sessile Droplet Evaporation of Volatile Liquids
,”
Int. J. Heat Mass Transf.
,
86
, pp.
212
220
.
17.
Chhasatia
,
V. H.
,
Joshi
,
A. S.
, and
Sun
,
Y.
,
2010
, “
Effect of Relative Humidity on Contact Angle and Particle Deposition Morphology of an Evaporating Colloidal Drop
,”
Appl. Phys. Lett.
,
97
, p. 231909.
18.
Wang
,
Y.
,
Ma
,
L.
,
Xu
,
X.
, and
Luo
,
J.
,
2016
, “
Expressions for the Evaporation of Sessile Liquid Droplets Incorporating the Evaporative Cooling Effect
,”
J. Colloid Interface Sci.
,
484
, pp.
291
297
.
19.
Ristenpart
,
W. D.
,
Kim
,
P. G.
,
Domingues
,
C.
,
Wan
,
J.
, and
Stone
,
H. A.
,
2007
, “
Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops
,”
Phys. Rev. Lett.
,
99
, p. 234502.
20.
Barash
,
L. Y.
,
2015
, “
Dependence of Fluid Flows in an Evaporating Sessile Droplet on the Characteristics of the Substrate
,”
Int. J. Heat Mass Transf.
,
84
, pp.
419
426
.
21.
Shin
,
D. H.
, and
Lee
,
S. H.
,
2012
, “
Wetting Behavior and Evaporation Characteristics of Nanofluid Droplets on Glass Surfaces
,”
J. ILASS-Korea
,
17
(
1
), pp.
9
13
.
22.
Zheng
,
Z.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Numerical Investigation on Conjugate Heat Transfer of Evaporating Thin Film in a Sessile Droplet
,”
Int. J. Heat Mass Transf.
,
101
, pp.
10
19
.
23.
Diddens
,
C.
,
Kuerten
,
J. G. M.
,
van der Geld
,
C. W. M.
, and
Wijshoff
,
H. M. A.
,
2017
, “
Modeling the Evaporation of Sessile Multi-Component Droplets
,”
J. Colloid Interface Sci.
,
487
, pp.
426
436
.
24.
Gerken
,
W. J.
, and
Oehlschlaeger
,
M. A.
,
2017
, “
Modeling Nanofluid Sessile Drop Evaporation
,”
Heat Mass Transf.
,
53
(
7
), pp.
2341
2349
.
25.
Schweigler
,
K. M.
,
Ben Said
,
M.
,
Seifritz
,
S.
,
Selzer
,
M.
, and
Nestler
,
B.
,
2017
, “
Experimental and Numerical Investigation of Drop Evaporation Depending on the Shape of the Liquid/Gas Interface
,”
Int. J. Heat Mass Transf.
,
105
, pp.
655
663
.
26.
Chen
,
R.
,
Phuoc
,
T. X.
, and
Martello
,
D.
,
2010
, “
Effects of Nanoparticles on Nanofluid Droplet Evaporation
,”
Int. J. Heat Mass Transf.
,
53
(
19–20
), pp.
3677
3682
.
27.
Larson
,
R. G.
,
2014
, “
Transport and Deposition Patterns in Drying Sessile Droplets
,”
AIChE J.
,
60
(
5
), pp.
1538
1571
.
28.
Portuguez
,
E.
,
Alzina
,
A.
,
Michaud
,
P.
,
Oudjedi
,
M.
, and
Smith
,
A.
,
2017
, “
Evolution of a Water Pendant Droplet : Effect of Temperature and Relative Humidity
,”
Nat. Sci.
,
9
(
9
), pp.
1
20
.
29.
Singh
,
S. K.
,
Khandekar
,
S.
,
Pratap
,
D.
, and
Ramakrishna
,
S. A.
,
2013
, “
Wetting Dynamics and Evaporation of Sessile Droplets on Nano-Porous Alumina Surfaces
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
432
, pp.
71
81
.
30.
Hu
,
H.
, and
Larson
,
R. G.
,
2005
, “
Analysis of the Microfluid Flow in an Evaporating Sessile Droplet
,”
Langmuir
,
21
(
9
), pp.
3963
3971
.
31.
Sikarwar
,
B. S.
,
Battoo
,
N. K.
,
Khandekar
,
S.
, and
Muralidhar
,
K.
,
2010
, “
Dropwise Condensation Underneath Chemically Textured Surfaces: Simulation and Experiments
,”
ASME J. Heat Transf.
,
133
(
2
), p.
021501
.
32.
Sikarwar
,
B. S.
,
Muralidhar
,
K.
, and
Khandekar
,
S.
,
2013
, “
Effect of Drop Shape on the Heat Transfer During Dropwise Condensation Underneath Inclined Surfaces
,”
Interfacial Phenom. Heat Transf.
,
1
(
4
), pp.
339
356
.
33.
Baghel
,
V.
,
Sikarwar
,
B. S.
, and
Muralidhar
,
K.
,
2018
, “
Modeling of Heat Transfer Through a Liquid Droplet
,”
Heat Mass Transf.
, pp.
1
15
.
You do not currently have access to this content.