Direct numerical simulations for low Prandtl number fluid (Pr = 0.0216) are used to study the steady-state Rayleigh–Bénard convection (RB) in a two-dimensional unit aspect ratio box. The steady-state RB convection is characterized by analyzing the time-averaged temperature-field, and flow field for a wide range of Rayleigh number (2.1 × 105 ⩽ Ra ⩽ 2.1 × 108). It is seen that the time-averaged and space-averaged Nusselt number (Nuh¯) at the hot-wall monotonically increases with the increase in Rayleigh number (Ra) and the results show a power law scaling Nuh¯Ra0.2593. The current Nusselt number results are compared with the results available in the literature. The complex flow is analyzed by studying the frequency power spectra of the steady-state signal of the vertical velocity at the midpoint of the box for different Ra and probability density function of dimensionless temperature at various locations along the midline of the box.

References

References
1.
Lappa
,
Marcello
,
2009
,
Thermal Convection: Patterns, Evolution and Stability
,
John Wiley & Sons
,
New York
.
2.
Stevens
,
Richard J. A. M.
,
Verzicco
,
Roberto
, and
Lohse
,
Detlef
,
2010
, “
Radial Boundary Layer Structure and Nusselt Number in Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
643
, pp.
495
507
.
3.
Satbhai
,
Ojas
,
Roy
,
Subhransu
, and
Ghosh
,
Sudipto
,
2017
, “
A Parametric Multi-Scale, Multiphysics Numerical Investigation in a Casting Process for Al-Si alloy and a Macroscopic Approach for Prediction of ECT and CET Events
,”
Appl. Therm. Eng.
,
113
, pp.
386
412
.
4.
Ribeiro
,
Adolfo
,
Fabre
,
Guillaume
,
Guermond
,
Jean-Luc
, and
Aurnou
,
Jonathan M
,
2015
, “
Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals
,”
Metals
,
5
(
1
), pp.
289
335
.
5.
Aurnou
,
J. M.
, and
Olson
,
P. L.
,
2001
, “
Experiments on Rayleigh–Bénard Convection, Magnetoconvection and Rotating Magnetoconvection in Liquid Gallium
,”
J. Fluid. Mech.
,
430
, pp.
283
307
.
6.
King
,
Eric M.
, and
Aurnou
,
Jonathan M.
,
2013
, “
Turbulent Convection in Liquid Metal With and Without Rotation
,”
Proc. Natl. Acad. Sci.
,
110
(
17
), pp.
6688
6693
.
7.
Satbhai
,
Ojas
,
Roy
,
Subhransu
, and
Ghosh
,
Sudipto
,
2017
, “
A Numerical Study to Investigate the Heat Transfer and Thermodynamic Performance of a Natural Convection Driven Thermal Energy Storage System
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
, American Society of Mechanical Engineers,
New York
.
8.
Bejan
,
Adrian
,
2004
,
Convection Heat Transfer
,
Wiley
,
New York
.
9.
Satbhai
,
Ojas
,
Roy
,
Subhransu
, and
Ghosh
,
Sudipto
,
2018
, “
Role of Heating Location on the Performance of a Natural Convection Driven Melting Process Inside a Square Shaped Thermal Energy Storage System
,”
J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
061007
.
10.
Satbhai
,
Ojas
,
Roy
,
Subhransu
, and
Ghosh
,
Sudipto
,
2012
, “
Numerical Simulation of Laser Surface Remelting on Unstructured Grids
,”
Trans. Indian Inst. Metals
,
65
, pp.
833
840
.
11.
Castillo-Castellanos
,
Andres
,
Sergent
,
Anne
, and
Rossi
,
Maurice
,
2016
, “
Reversal Cycle in Square Rayleigh–Bénard Cells in Turbulent Regime
,”
J. Fluid Mech.
,
808
, pp.
614
640
.
12.
Podvin
,
Bérengère
, and
Sergent
,
Anne
,
2017
, “
Precursor for Wind Reversal in a Square Rayleigh-Bénard Cell
,”
Phys. Rev. E
,
95
(
1
), pp.
013112
.
13.
Hanjalić
,
K.
,
2002
, “
One-Point Closure Models for Buoyancy-Driven Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
321
347
.
14.
Choi
,
Seok-Ki
, and
Kim
,
Seong-O.
,
2012
, “
Turbulence Modeling of Natural Convection in Enclosures: A Review
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
283
297
.
15.
Jones
,
C. A.
,
Moore
,
D. R.
, and
Weiss
,
N. O.
,
1976
, “
Axisymmetric Convection in a Cylinder
,”
J. Fluid Mech.
,
73
(
2
), pp.
353
388
.
You do not currently have access to this content.