In order to cool a heated surface surrounded by fluid flow, vortex generator plays a significant role. The presence of a vortex generator in the flow creates both latitudinal and longitudinal vortices. The vortices energize the boundary layer over the heated surface and excel convective mode of heat transfer. Therefore, the strength of these vortices is directly proportional to the heat transferal rate. The present study considers a vortex generator attached to a heated base plate. The system is studied numerically and experimentally. The existing rectangular vortex generator is modified computationally with a goal to escalate the overall heat transferal rate. The role of secondary surfaces fixed over the primary surface of the rectangular vortex generator is discussed. Water flows over the surface of the base plate at a Reynolds number of 350. And the plate has a constant heat flux of 1 kW/m2. The results show that the secondary surfaces fixed parallel to the heated plate over the vortex generator significantly augment the heat transfer rate to about 13.4%. However, it enhances the drag by 5.7%. A linear regression analysis predicts the suitable placement of the secondary surface with an enhancement of heat transfer rate of about 7.6%, with a decrease in the drag by about 0.7%. In order to validate the obtained results, the best configuration is fabricated and tested experimentally. The experimental outcomes are found to complement the numerical results. In this experiment, the modification yields 25% enhancement in heat transfer rate.

References

References
1.
Patankar
,
S. V.
, and
Prakash
,
C.
,
1981
, “
An Analysis of the Effect of Plate Thickness on Laminar Flow and Heat Transfer in Interrupted-Plate Passages
,”
Int. J. Heat Mass Transf.
,
24
(
11
), pp.
1801
1810
.
2.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1993
, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transf.
,
36
(
9
), pp.
2327
2337
.
3.
Biswas
,
G.
, and
Chattopadhyay
,
H.
,
1992
, “
Heat Transfer in a Channel With Built-in Wing-Type Vortex Generators
,”
Int. J. Heat Mass Transf.
,
35
(
4
), pp.
803
814
.
4.
Fiebig
,
M.
,
Chen
,
Y.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N. K.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part A: Heat Transfer Behavior and Occurrence of Heat Transfer Reversal
,”
Numer. Heat Transfer, Part A
,
28
(
2
), pp.
133
146
.
5.
Fiebig
,
M.
,
Chen
,
Y.
,
Grosse-Gorgemann
,
A.
, and
Mitra
,
N. K.
,
1995
, “
Conjugate Heat Transfer of a Finned Tube Part B: Heat Transfer Augmentation and Avoidance of Heat Transfer Reversal by Longitudinal Vortex Generators
,”
Numer. Heat Transfer, Part A
,
28
(
2
), pp.
147
155
.
6.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transf.
,
39
(
16
), pp.
3441
3451
.
7.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
2002
, “
Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows
,”
ASME J. Heat Transf.
,
124
(
6
), pp.
1158
1168
.
8.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Channel With Longitudinal Vortex Generator. Part B: Parametric Study of Major Influence Factors
,” ,
51
(
13
14
), pp.
3683
3692
.
9.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2012
, “
Effect of Longitudinal Vortex Generator on Heat Transfer in Rectangular Channels
,”
Appl. Therm. Eng.
,
37
, pp.
67
72
.
10.
Ebrahimi
,
A.
,
Ehsan
,
R.
, and
Saeid
,
K.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appli. Therm. Eng.
,
78
, pp.
576
583
.
11.
Li
,
L. X. D.
,
Yuwen
,
Z.
,
Lijun
,
Y.
, and
Yongping
,
Y.
,
2015
, “
Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
92
, pp.
85
96
.
12.
Song
,
K.
,
Song
,
L.
, and
LiangBi
,
W.
,
2016
, “
Interaction of Counter Rotating Longitudinal Vortices and the Effect on Fluid Flow and Heat Transfer
,”
Int. J. Heat Mass Transf.
,
93
, pp.
349
360
.
13.
Abdollahi
,
A.
, and
Shams
,
M.
,
2015
, “
Optimization of Shape and Angle of Attack of Winglet Vortex Generator in a Rectangular Channel for Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
81
, pp.
376
387
.
14.
Vitillo
,
F.
,
Cachon
,
L.
,
Reulet
,
F.
, and
Millan
,
P.
,
2016
, “
Flow Analysis of an Innovative Compact Heat Exchanger Channel Geometry
,”
Int. J. Heat Fluid Flow
,
58
, pp.
30
39
.
15.
Lu
,
G.
, and
Zhou
,
G.
,
2016
, “
Numerical Simulation on Performances of Plane and Curved Winglet–Pair Vortex Generators in a Rectangular Channel and Field Synergy Analysis
,”
Int. J. Therm. Sci.
,
109
, pp.
323
333
.
16.
Zhang
,
Q.
,
Liang-Bi
,
W.
, and
Yong-Heng
,
Z.
,
2017
, “
The Mechanism of Heat Transfer Enhancement Using Longitudinal Vortex Generators in a Laminar Channel Flow With Uniform Wall Temperature
,”
Int. J. Therm. Sci.
,
117
, pp.
26
43
.
17.
Chen
,
L.
,
Robin
,
G. B.
,
Bernhard
,
W.
,
Jose
,
R.
,
Michael
,
C.
, and
Rico
,
P.
,
2017
, “
Experimental and Numerical Heat Transfer Investigation of an Impingement Jet Array With V-Ribs on the Target Plate and on the Impingement Plate
,”
Int. J. Heat Fluid Flow
,
68
, pp.
126
138
.
18.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid
,”
Int. J. Therm. Sci.
,
127
, pp.
61
78
.
19.
Kashyap
,
U.
,
Das
,
K.
, and
Debnath
,
B. K.
,
2018
, “
Effect of Surface Modification of a Rectangular Vortex Generator on Heat Transfer Rate From a Surface to Fluid: An Extended Study
,”
Int. J. Therm. Sci.
,
134
, pp.
269
281
.
20.
Zhou
,
G.
, and
Zhizheng
,
F.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
.
21.
Roache
,
P. J
,
1993
, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME FED
, Vol.
158
, p.
109
.
22.
Zhou
,
G.
, and
Qiuling
,
Y.
,
2012
, “
Experimental Investigations of Thermal and Flow Characteristics of Curved Trapezoidal Winglet Type Vortex Generators
,”
Appl. Therm. Eng.
,
37
, pp.
241
248
.
You do not currently have access to this content.