With a substantial increase in thermal power density, the operating temperature of high-power light-emitting diodes (LEDs) rises rapidly, exerting a notable effect on chipsets’ performance. A water-cooled microchannel radiator and an air-cooled radiator are proposed to solve this problem. The effects of key factors of both radiators on heat dissipation in a high-power LED chipsets, and general comparisons between each method, are analyzed via Fluent. The simulation results indicate that heat dissipation from the water-cooled microchannel radiator is readily affected by the microchannel’s flow rate and aspect ratio. A larger flow rate and larger aspect ratio favor improved heat dissipation in the water-cooled microchannel radiator. Heat dissipation in the air-cooled radiator is related to volumetric flow rate, rib number, rib height, rib thickness, and substrate thickness. A larger volumetric flow rate, rib number, and rib height favor heat dissipation in the air-cooled radiator. However, there is a critical thickness value: if the thickness is less than the critical value, heat dissipation is greatly affected by rib thickness and substrate thickness, if the thickness is larger than the critical value, the influence is insignificant. The high-power LED chipsets’ temperature is also related to the insulating substrate’ input power and thermal conductivity. A large input power leads to a substantial increase in temperature, and larger thermal conductivity of the insulating substrate minimizes temperature increase in the high-power LED chipsets. When comparing the two radiators, results show an air-cooled radiator should be used in low-power LED chipsets. When an air-cooled radiator cannot satisfy the chipset’s needs, a water-cooled microchannel radiator should be utilized.

References

1.
Xiao
,
C.
,
Liao
,
H.
,
Wang
,
Y.
,
Li
,
J.
, and
Zhu
,
W.
,
2017
, “
A Novel Automated Heat-Pipe Cooling Device for High-Power LEDs
,”
Appl. Therm. Eng.
,
111
, pp.
1320
1329
.
2.
Huang
,
C.-H.
, and
Wang
,
G.-J.
,
2017
, “
A Design Problem to Estimate the Optimal Fin Shape of LED Lighting Heat Sinks
,”
Int. J. Heat Mass Transf.
,
106
, pp.
1205
1217
.
3.
Yang
,
K.-S.
,
Chien
,
K.-H.
,
Jeng
,
M.-S.
, and
Lee
,
M.-T.
,
2014
, “
Heat Transfer Characteristics in High Power LED Packaging AU - Chung, Chi-Hung
,”
Smart Sci.
,
2
(
1
), pp.
1
6
.
4.
Ahn
,
B.-L.
,
Jang
,
C.-Y.
,
Leigh
,
S.-B.
,
Yoo
,
S.
, and
Jeong
,
H.
,
2014
, “
Effect of LED Lighting on the Cooling and Heating Loads in Office Buildings
,”
Appl. Energy
,
113
, pp.
1484
1489
.
5.
Schmid
,
G.
,
Huang
,
Z.-L.
,
Yang
,
T.-H.
, and
Chen
,
S.-L.
,
2017
, “
Numerical Analysis of a Vertical Double-Pipe Single-Flow Heat Exchanger Applied in an Active Cooling System for High-Power LED Street Lights
,”
Appl. Energy
,
195
, pp.
426
438
.
6.
Wu
,
H.-H.
,
Lin
,
K.-H.
, and
Lin
,
S.-T.
,
2012
, “
A Study on the Heat Dissipation of High Power Multi-Chip COB LEDs
,”
Microelectronics J.
,
43
(
4
), pp.
280
287
.
7.
Ha
,
M.
, and
Graham
,
S.
,
2012
, “
Development of a Thermal Resistance Model for Chip-on-Board Packaging of High Power LED Arrays
,”
Microelectron. Reliab.
,
52
(
5
), pp.
836
844
.
8.
Kim
,
L.
,
Choi
,
J. H.
,
Jang
,
S. H.
, and
Shin
,
M. W.
,
2007
, “
Thermal Analysis of LED Array System With Heat Pipe
,”
Thermochim. Acta
,
455
(
1
), pp.
21
25
.
9.
Weng
,
C.-J.
,
2009
, “
Advanced Thermal Enhancement and Management of LED Packages
,”
Int. Commun. Heat Mass Transf.
,
36
(
3
), pp.
245
248
.
10.
Yung
,
K. C.
,
Liem
,
H.
,
Choy
,
H. S.
, and
Lun
,
W. K.
,
2010
, “
Thermal Performance of High Brightness LED Array Package on PCB
,”
Int. Commun. Heat Mass Transf.
,
37
(
9
), pp.
1266
1272
.
11.
Nam
,
S. R.
,
Jung
,
C. W.
,
Choi
,
C.-H.
, and
Kang
,
Y. T.
,
2013
, “
Cooling Performance Enhancement of LED (Light Emitting Diode) Packages With Carbon Nanogrease
,”
Energy
,
60
, pp.
195
203
.
12.
Jayachandran
,
B.
,
Sajith
,
P. P.
, and
Sobhan
,
C. B.
,
2015
, “
Investigations on Replacement of Fins with Flat Heat Pipes for High Power LEDs
,”
Proc. Eng.
,
118
, pp.
654
661
.
13.
Zhao
,
D.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(
1
), pp.
15
24
.
14.
Ming-Tzer
,
L.
,
Chao-Chi
,
C.
,
Ray-Hua
,
H.
,
De-Shau
,
H.
, and
Chi-Ming
,
L.
Heat Dissipation Performance for the Application of Light Emitting Diode
,”
Proceedings of the 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS
,
Rome, Italy
, pp.
145
149
.
15.
Tsai
,
M. Y.
,
Chen
,
C. H.
, and
Kang
,
C. S.
,
2012
, “
Thermal Measurements and Analyses of Low-Cost High-Power LED packages and Their Modules
,”
Microelectron. Reliab.
,
52
(
5
), pp.
845
854
.
16.
Tang
,
Y.
,
Lin
,
L.
,
Zhang
,
S.
,
Zeng
,
J.
,
Tang
,
K.
,
Chen
,
G.
, and
Yuan
,
W.
,
2017
, “
Thermal Management of High-Power LEDs Based on Integrated Heat Sink With Vapor Chamber
,”
Energy Convers. Manag.
,
151
, pp.
1
10
.
17.
Shin
,
D. H.
,
Sohn
,
D. K.
, and
Ko
,
H. S.
,
2018
, “
Analysis of Thermal flow Around Heat Sink With Ionic Wind for High-Power LED
,”
Appl. Therm. Eng.
,
143
, pp.
376
384
.
18.
Zhou
,
J.
,
Huang
,
J.
,
Wang
,
Y.
, and
Zhou
,
Z.
,
2016
, “
Thermal Distribution of Multiple LED Module
,”
Appl. Therm. Eng.
,
93
, pp.
122
130
.
19.
Yu
,
S.-H.
,
Lee
,
K.-S.
, and
Yook
,
S.-J.
,
2010
, “
Natural Convection Around a Radial Heat Sink
,”
Int. J. Heat Mass Transf.
,
53
(
13
), pp.
2935
2938
.
20.
Luo
,
X.
, and
Liu
,
S.
,
2007
, “
A Microjet Array Cooling System for Thermal Management of High-Brightness LEDs
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
475
484
.
21.
Deng
,
Y.
, and
Liu
,
J.
,
2010
, “
A Liquid Metal Cooling System for the Thermal Management of High Power LEDs
,”
Int. Commun. Heat Mass Transf.
,
37
(
7
), pp.
788
791
.
22.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
J. Heat Transf.
,
133
(
5
), 051702.
23.
Lai
,
Y.
,
Cordero
,
N.
,
Barthel
,
F.
,
Tebbe
,
F.
,
Kuhn
,
J.
,
Apfelbeck
,
R.
, and
Würtenberger
,
D.
,
2009
, “
Liquid Cooling of Bright LEDs for Automotive Applications
,”
Appl. Therm. Eng.
,
29
(
5
), pp.
1239
1244
.
24.
Acikalin
,
T.
,
Garimella
,
S. V.
,
Petroski
,
J.
, and
Arvind
,
R.
Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes
,”
Proceedings of The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE Cat. No.04CH37543)
,
Las Vegas, NV
, Vol.
661
, pp.
663
671
.
25.
Wu
,
S.-J.
,
Hsu
,
H.-C.
,
Fu
,
S.-L.
, and
Yeh
,
J.-N.
,
2014
, “
Numerical Simulation of High Power LED Heat-Dissipating System
,”
Electron. Mater. Lett.
,
10
(
2
), pp.
497
502
.
26.
Sufian
,
S. F.
,
Fairuz
,
Z. M.
,
Zubair
,
M.
,
Abdullah
,
M. Z.
, and
Mohamed
,
J. J.
,
2014
, “
Thermal Analysis of Dual Piezoelectric Fans for Cooling Multi-LED Packages
,”
Microelectron. Reliab.
,
54
(
8
), pp.
1534
1543
.
You do not currently have access to this content.