The intense thermal fluxes and aero-thermomechanical loads generated at sharp leading edges of atmospheric hypersonic vehicles traveling above Mach 5 have motivated an interest in novel thermal management strategies. Here, we use a low-temperature stainless steel-water system to experimentally investigate the feasibility of metallic leading edge heat pipe concepts for thermal management in an efficient load supporting structure. The concept is based upon a two-phase, high thermal conductance “heat pipe” which redistributes the localized thermal flux created at the leading edge stagnation point over a larger surface for effective removal. Structural efficiency is achieved by configuring the system as a wedge-shaped sandwich panel with an I-cell core that simultaneously permits axial vapor and returns liquid flow. The measured axial temperature profiles resulting from a localized thermal flux applied to the tip are consistent with effective thermal spreading that lowered the peak leading edge temperature and reduced the temperature gradients when compared with an equivalent structure containing no working fluid. A simple finite element model that treated the vapor as an equivalent, high thermal conductivity material was in good agreement with these experiments. The model is then used to design a niobium alloy-lithium system that is shown to be suitable for enthalpy conditions representative of Mach 7 scramjet-powered flight. The study indicates that the surface temperature reductions of heat pipe-based leading edges may be sufficient to permit the use of nonablative, refractory metal leading edges with oxidation protection in hypersonic environments.

References

References
1.
Heppenheimer
,
T. A.
,
2009
,
Facing the Heat Barrier: A History of Hypersonics
,
Government Printing Office
, pp.
ix
. ISBN: B0016BWKJQ.
2.
Anderson
,
J. D.
,
1992
, “Aerothermodynamics: A Tutorial Discussion,”
Thermal Structures and Materials for High-Speed Flight
,
E. A.
Thornton
, ed.,
American Institute of Aeronautics and Astronautics
, pp.
3
57
.
3.
Anderson
,
J. D.
,
1989
,
Hypersonic and High Temperature Gas Dynamics
,
1st ed.
,
American Institute of Aeronautics and Astronautics
, pp.
390
392
. ISBN: 0070016712
4.
Opeka
,
M.
,
Talmy
,
I.
, and
Zaykoski
,
J.
,
2004
, “
Oxidation-Based Materials Selection for 2000°C+ Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience
,”
J. Mater. Sci.
,
39
(
19
), pp.
5887
5904
.
5.
Walker
,
S.
, and
Rodgers
,
F.
,
2005
, “
Falcon Hypersonic Technology Overview
,”
AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference
,
American Institute of Aeronautics and Astronautics
.
6.
Arrington
,
J.
, and
Jones
,
J.
,
1983
, “
Shuttle Performance: Lessons Learned
,”
NASA Conference Publication 2283 Part 2
,
Scientific and Technical Information Office, NASA
,
Langley, VA
.
7.
Bowcutt
,
K.
,
2005
, private communication.
8.
Steeves
,
C. A.
,
He
,
M. Y.
,
Kasen
,
S. D.
,
Valdevit
,
L.
,
Wadley
,
H. N. G.
, and
Evans
,
A. G.
,
2009
, “
Feasibility of Metallic Structural Heat Pipes as Sharp Leading Edges for Hypersonic Vehicles
,”
ASME J. Appl. Mech.
,
76
(
3
),
031014
.
9.
Squire
,
T. H.
, and
Marschall
,
J.
,
2010
, “
Material Property Requirements for Analysis and Design of UHTC Components in Hypersonic Applications
,”
J. Eur. Ceram. Soc.
,
30
(
11
), pp.
2239
2251
.
10.
Wuchina
,
E.
,
Opeka
,
M.
,
Causey
,
S.
,
Buesking
,
K.
,
Spain
,
J.
,
Cull
,
A.
,
Routbort
,
J.
, and
Guitierrez-Mora
,
F.
,
2004
, “
Designing for Ultrahigh-Temperature Applications: The Mechanical and Thermal Properties of HfB2, HfCx, HfNx and αHf(N)
,”
J. Mater. Sci.
,
39
, pp.
5939
5949
.
11.
Guo
,
S. Q.
,
2009
, “
Densification of ZrB2-Based Composites and Their Mechanical and Physical Properties: A Review
,”
J. Eur. Ceram. Soc.
,
29
(
6
), pp.
995
1011
.
12.
Gasch
,
M.
, and
Johnson
,
S.
,
2010
, “
Physical Characterization and Arcjet Oxidation of Hafnium-Based Ultra High Temperature Ceramics Fabricated by Hot Pressing and Field-Assisted Sintering
,”
J. Eur. Ceram. Soc.
,
30
(
11
), pp.
2337
2344
.
13.
Tiet
,
T. E.
, and
Wilson
,
J. W.
,
1965
,
Behavior and Properties of Refractory Metals
,
Stanford University Press
, pp.
223
273
. ISBN: 0804701628.
14.
Priceman
,
S.
, and
Sama
,
L.
,
1968
, “
Development of Fused Slurry Silicide Coatings for the Elevated-Temperature Oxidation Protection of Columbium and Tantalum Alloys
,” AFML-TR-65-204.
15.
Glass
,
D. E.
, and
Carmada
,
C. J.
,
1990
, “
Preliminary Thermal/Structural Analysis of a Carbon-Carbon/Refractory-Metal Heat-Pipe-Cooled Wing Leading Edge
,”
Proceedings of the First Thermal Structures Conference
,
University of Virginia Light Thermal Structures Center
,
Charlottesville, VA
, pp.
241
257
.
16.
Glass
,
D. E.
,
Camarda
,
C. J.
,
Merrigan
,
M. A.
, and
Sena
,
J. T.
,
1999
, “
Fabrication and Testing of Mo-Re Heat Pipes Embedded in Carbon/Carbon
,”
J. Spacecraft Rockets
,
36
(
1
), pp.
79
86
.
17.
Glass
,
D. E.
,
Camarda
,
C. J.
,
Merrigan
,
M. A.
,
Sena
,
J.
, and
Reid
,
R. S.
,
1999
, “
Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe
,”
J. Spacecraft Rockets
,
36
(
6
), pp.
921
923
.
18.
Camarda
,
C. J.
, and
Masek
,
R. V.
,
1981
, “
Design, Analysis, and Tests of a Shuttle-Type Heat-Pipe-Cooled Leading Edge
,”
J. Spacecraft Rockets
,
18
(
1
), pp.
71
78
.
19.
Clark
,
L. T.
, and
Glenn
,
G. S.
,
1988
, “
Design Analysis and Testing of Liquid Metal Heat Pipes for Application to Hypersonic Vehicles
,”
Proceedings of the 23rd Thermophysics, Plasmadynamics and Lasers Conference
,
AIAA
,
San Antonio, TX
.
20.
Camarda
,
C. J.
,
1977
, “
Analysis and Radiant Heating Tests of a Heat-Pipe-Cooled Leading Edge
,” NASA Tech Note D-8468.
21.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes: Modeling, Testing, and Applications
,
Wiley-Interscience
,
New York
, pp.
1
17
. ISBN: 047130512X.
22.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
New York
. ISBN: 1560323833.
23.
Reay
,
D. A.
,
Kew
,
P. A.
, and
Dunn
,
P. D.
,
2006
,
Heat Pipes
,
Butterworth-Heinemann
,
New York
. ISBN: 0080912621.
24.
Wick
,
N.
, and
Hutchinson
,
J. W.
,
2001
, “
Optimal Truss Plates
,”
Int. J. Solids Struct.
,
38
(
30–31
), pp.
5165
5183
.
25.
Wadley
,
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc. A
,
364
(
1838
), pp.
31
68
.
26.
Wadley
,
H. N. G.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2003
, “
Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures
,”
Compos. Sci. Technol.
,
63
(
16
), pp.
2331
2343
.
27.
Lim
,
J. H.
, and
Kang
,
K. J.
,
2006
, “
Mechanical Behavior of Sandwich Panels With Tetrahedral and Kagome Truss Cores Fabricated From Wires
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5228
5246
.
28.
Queheillalt
,
D. T.
, and
Wadley
,
H. N. G.
,
2005
, “
Cellular Metal Lattices With Hollow Trusses
,”
Acta Mater.
,
53
(
2
), pp.
303
313
.
29.
Wei
,
Z.
,
Deshpande
,
V. S.
,
Evans
,
A. G.
,
Dharmasena
,
K. P.
,
Queheillalt
,
D. T.
,
Wadley
,
H. N. G.
,
Murty
,
Y. V.
,
Elzey
,
R. K.
,
Dudt
,
P.
,
Chen
,
Y.
,
Knight
,
D.
, and
Kiddy
,
K.
,
2008
, “
The Resistance of Metallic Plates to Localized Impulse
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
2074
2091
.
30.
Hirschel
,
E. H.
,
2005
,
Basics of Aerothermodynamics
,
Springer
,
New York
, pp.
1
68
. ISBN: 3540221328
31.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
Taylor and Francis
,
New York
.
32.
Nomex 994 Technical Data Sheet
, DuPont,
2002
.
33.
Holman
,
J. P.
,
2001
,
Heat Transfer
,
8th ed.
,
McGraw-Hill
,
New York
. ISBN: 0070083002.
34.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
2nd ed.
,
Taylor and Francis
,
New York
. ISBN: 1591690358.
35.
White
,
F. M.
,
2011
,
Fluid Mechanics
,
7th ed.
,
McGraw-Hill
,
New York
. ISBN: 0073529346.
36.
Granta Design, CES Material Selection Software.
37.
Neves
,
A. J.
, and
Nazaré
,
M. H.
,
2001
,
Properties, Growth, and Applications of Diamond
,
The Institution of Electrical Engineers
,
London
, pp.
32
39
. ISBN: 0852967853.
38.
Kasen
,
S. D.
,
2013
, “
Thermal Management at Hypersonic Leading Edges
,” Ph.D. thesis,
University of Virginia
,
Charlottesville, VA
.
39.
NOAA, NASA, USAF
, U.S. Standard Atmosphere 1976,
Washington D.C.
,
1976
.
40.
Allegheny Technologies Inc
.,
C103 Alloy Product Data Sheet
,
2012
.
41.
Ohse
,
R. W.
, ed.,
1985
,
Handbook of Thermodynamic and Transport Properties of Alkali Metals
,
Blackwell Scientific
,
Hoboken, NJ
.
42.
Novak
,
M. D.
,
2010
, “
Microstructure Development and High-Temperature Oxidation of Silicide Coatings for Niobium Alloys
,” Ph.D. thesis,
University of California – Santa Barbara
,
Santa Barbara, CA
.
43.
Saad
,
M. A.
,
1985
,
Compressible Fluid Flow
,
Prentice-Hall
,
New York
. ISBN: 0131634860.
44.
Davis
,
J. R. W.
, ed.,
1998
,
Metals Handbook
,
Taylor & Francis
. ISBN: 0871706547.
You do not currently have access to this content.