The horizontally oriented jet flame induced by rectangular source impinging upon the opposite wall is actually common in the chemical industry, but the related studies are limited. In this paper, the computational fluid dynamics codes are carried out to investigate the temperature profile in thermal impinging flow of the horizontally oriented methane jet flame with rectangular source, which the rectangular orifice is 400 mm2 with three different aspect ratios (L/W = 1, 2, 4); besides, the jet velocities vary from 27.5 m/s to 125 m/s. As the horizontally oriented methane jet flame impinges on the vertical plate in front of the fuel orifice directly, the vertical temperature along the opposite plate is focused on. Results show that the temperature near the impingement point is the same for different jet velocities, but the temperature along the vertical direction is larger with increasing fuel jet velocity. Moreover, the orifice aspect ratio has a significant effect on the temperature, which increases with the aspect ratio at a given position for the momentum-controlled flame. The effective heat release rate on the basis of unburned fuel and ellipse flame shape hypothesis is put forward to correlate the temperature profile. Finally, a new correlation to illustrate the vertical temperature rising along the opposite plate is proposed in light of the orifice aspect ratio and fuel jet velocity, and the predictions obtained by the proposed model agree well with the numerical results, which is applicable for the horizontally oriented flame with rectangular source impinging upon the opposite wall.

References

References
1.
Tao
,
C. F.
,
Qian
,
Y. J.
,
Tang
,
F.
, and
Wang
,
Q.
,
2017
, “
Experimental Investigations on Temperature Profile and Air Entrainment of Buoyancy-Controlled Jet Flame From Inclined Nozzle Bounded the Wall
,”
Appl. Therm. Eng.
,
111
, pp.
510
515
.
2.
Huang
,
Y. B.
,
Li
,
Y. F.
,
Dong
,
B. Y.
, and
Li
,
J. M.
,
2018
, “
Predicting the Main Geometrical Features of Horizontal Rectangular Source Fuel Jet Fires
,”
J. Energy Inst.
,
91
(
6
), pp.
1153
1163
.
3.
Huang
,
Y. B.
,
Li
,
Y. F.
, and
Dong
,
B. Y.
,
2018
, “
Radiant Heat Flux Profile of Horizontally Oriented Rectangular Source Fuel
,”
Ind. Eng. Chem. Res.
,
57
, pp.
1078
1088
.
4.
Gómez-Mares
,
M.
,
Zárate
,
L.
, and
Casal
,
J.
,
2008
, “
Jet Fires and the Domino Effect
,”
J. Fire. Saf.
,
43
(
8
), pp.
583
588
.
5.
Gopalaswami
,
N.
,
Liu
,
Y.
,
Laboureur
,
D. M.
,
Zhang
,
B.
, and
Mannan
,
M. S.
,
2016
, “
Experimental Study on Propane Jet Fire Hazards Comparison of Main Geometrical Features With Empirical Models
,”
J. Loss Prevent. Proc.
,
41
, pp.
365
375
.
6.
Laboureur
,
D. M.
,
Gopalaswami
,
N.
,
Zhang
,
B.
,
Liu
,
Y.
, and
Mannan
,
M. S.
,
2016
, “
Experimental Study on Propane Jet Fire Hazards: Assessment of the Main Geometrical Features of Horizontal Jet Flames
,”
J. Loss Prevent. Proc.
,
41
, pp.
355
364
.
7.
Zhang
,
X. L.
,
Hu
,
L. H.
,
Zhang
,
X. C.
,
Tang
,
F.
,
Jiang
,
Y.
, and
Lin
,
Y. J.
,
2017
, “
Flame Projection Distance of Horizontally Oriented Buoyant Turbulent Rectangular Jet Fires
,”
Combust. Flame
,
176
, pp.
370
376
.
8.
Gómez-Mares
,
M.
,
Muñoz
,
M.
, and
Casal
,
J.
,
2010
, “
Radiant Heat From Propane Jet Fires
,”
Exp. Therm. Fluid Sci.
,
34
(
3
), pp.
323
329
.
9.
Palacios
,
A.
, and
Casal
,
J.
,
2011
, “
Assessment of the Shape of Vertical Jet Fires
,”
Fuel
,
90
(
2
), pp.
824
833
.
10.
Palacios
,
A.
,
Muñoz
,
M.
, and
Casal
,
J.
,
2009
, “
Jet Fires: An Experimental Study of the Main Geometrical Features of the Flame in Subsonic and Sonic Regimes
,”
AICHE. J.
,
55
(
1
), pp.
256
263
.
11.
Palacios
,
A.
,
Muñoz
,
M.
,
Darbra
,
R. M.
, and
Casal
,
J.
,
2012
, “
Thermal Radiation From Vertical jet Fires
,”
Fire Saf. J.
,
51
(
7
), pp.
93
101
.
12.
Palacios
,
A.
,
Bradley
,
D.
, and
Hu
,
L.
,
2016
, “
Lift-Off and Blow-Off of Methane and Propane Subsonic Vertical Jet Flames, With and Without Diluent Air
,”
Fuel
,
183
, pp.
414
419
.
13.
Hooker
,
P.
,
Hall
,
J.
,
Hoyes
,
J. R.
,
Newton
,
A.
, and
Willoughby
,
D.
,
2017
, “
Hydrogen Jet Fires in a Passively Ventilated Enclosure
,”
Int. J. Hydrogen Energy
,
42
(
11
), pp.
7577
7588
.
14.
Wang
,
C. J.
,
Wen
,
J. X.
,
Chen
,
Z. B.
, and
Dembele
,
S.
,
2014
, “
Predicting Radiative Characteristics of Hydrogen and Hydrogen/Methane Jet Fires Using FireFOAM
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20560
20569
.
15.
Kiran
,
D. Y.
, and
Mishra
,
D. P.
,
2007
, “
Experimental Studies of Flame Stability and Emission Characteristics of Simple LPG Jet Diffusion Flame
,”
Fuel
,
86
(
10
11
), pp.
1545
1551
.
16.
Upatnieks
,
A.
,
Driscoll
,
J. F.
,
Rasmussen
,
C. C.
, and
Ceccio
,
S. L.
,
2004
, “
Lift Off of Turbulent Jet Flames Assessment of Edge Flame and Other Concepts Using Cinema-PIV
,”
Combust. Flame
,
138
(
3
), pp.
259
272
.
17.
Brennan
,
S. L.
,
Makarov
,
D. V.
, and
Molkov
,
V.
,
2009
, “
LES of High Pressure Hydrogen Jet Fire
,”
J. Loss Prevent. Proc.
22
(
3
), pp.
353
359
.
18.
Draper
,
J. W.
,
1847
, “
On the Production of Light by Heat
,”
J. Franklin I
,
44
(
3
), pp.
197
203
.
19.
Lowesmith
,
B. J.
, and
Hankinson
,
G.
,
2012
, “
Large Scale High Pressure Jet Fires Involving Natural Gas and Natural Gas/Hydrogen Mixtures
,”
Process Saf. Environ.
,
90
(
2
), pp.
108
120
.
20.
Becker
,
H. A.
, and
Liang
,
D.
,
1978
, “
Visible Length of Vertical Free Turbulent Diffusion Flames
,”
Combust. Flame
,
32
(
2
), pp.
115
137
.
21.
Zhang
,
X. C.
,
Hu
,
L. H.
,
Zhu
,
W.
,
Zhang
,
X. L.
, and
Yang
,
L. Z.
,
2014
, “
Axial Temperature Profile in Buoyant Plume of Rectangular Source Fuel Jet Fire in Normal- and a Sub-Atmospheric Pressure
,”
Fuel
,
134
(
9
), pp.
455
459
.
22.
Hu
,
L. H.
,
Wang
,
Q.
,
Tang
,
F.
,
Delichatsios
,
M.
, and
Zhang
,
X. C.
,
2013
, “
Axial Temperature Profile in Vertical Buoyant Turbulent Jet Fire in a Reduced Pressure Atmosphere
,”
Fuel
,
106
(
2
), pp.
779
786
.
23.
Mercedes
,
G. M.
,
Miguel
,
M.
, and
Joaquim
,
C.
,
2009
, “
Axial Temperature Distribution in Vertical Jet Fires
,”
J. Hazard. Mater.
,
172
(
1
), pp.
54
60
.
24.
Quintiere
,
J. G.
, and
Grove
,
B. S.
,
1998
, “
A Unified Analysis for Fire Plumes
,”
Proc. Combust. Inst.
,,
27
(
2
), pp.
2757
2766
.
25.
Zhang
,
X. C.
,
Guo
,
Z. M.
,
Tao
,
H. W.
,
Liu
,
J. Y.
,
Chen
,
Y. F.
,
Liu
,
A. H.
,
Xu
,
W. B.
, and
Liu
,
X. Z.
,
2017
, “
Maximum Temperature of Thermal Plume Beneath an Unconfined Ceiling With Different Inclination Angles Induced by Rectangular Fire Sources
,”
Appl. Therm. Eng.
,
120
, pp.
239
246
.
26.
Zhang
,
X. C.
,
Hu
,
L. H.
,
Zhu
,
W.
,
Zhang
,
X. L.
, and
Yang
,
L. Z.
,
2014
, “
Flame Extension Length and Temperature Profile in Thermal Impinging Flow of Buoyant Round Jet Upon a Horizontal Plate
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
15
22
.
27.
Gore
,
J. P.
,
Faeth
,
G. M.
,
Evans
,
D.
, and
Pfenning
,
D. B.
,
1986
, “
Structure and Radiation Properties of Large-Scale Natural Gas/Air Diffusion Flames
,”
Fire Mater.
,
10
(
3
), pp.
161
169
.
28.
Hu
,
L. H.
,
Wang
,
Q.
,
Delichatsios
,
M.
,
Lu
,
S. X.
, and
Tang
,
F.
,
2014
, “
Flame Radiation Fraction Behaviors of Sooty Buoyant Turbulent Jet Diffusion Flames in Reduced- and Normal Atmospheric Pressures and a Global Correlation With Reynolds Number
,”
Fuel
,
116
(
1
), pp.
781
786
.
29.
Zhou
,
K. B.
,
Liu
,
J. Y.
, and
Jiang
,
J. C.
,
2016
, “
Prediction of Radiant Heat Flux From Horizontal Propane Jet Fire
,”
Appl. Therm. Eng.
,
106
, pp.
634
639
.
30.
Zhou
,
K. B.
,
Liu
,
N. A.
,
Zhang
,
L. H.
, and
Satoh
,
K.
,
2014
, “
Thermal Radiation From Fire Whirls: Revised Solid Flame Model
,”
Fire Technol.
,
50
(
6
), pp.
1573
1587
.
31.
Zhang
,
B.
,
Liu
,
Y.
,
Laboureur
,
D.
, and
Mannan
,
M. S.
,
2015
, “
Experimental Study on Propane Jet Fire Hazards: Thermal Radiation
,”
Ind. Eng. Chem. Res.
,
54
, pp.
9251
9256
.
32.
Zhou
,
K. B.
,
Qin
,
X. L.
,
Wang
,
Z. H.
,
Pan
,
X. H.
, and
Jiang
,
J. C.
,
2018
, “
Generalization of the Radiative Fraction Correlation for Hydrogen and Hydrocarbon jet Fires in sub Sonic and Chocked Flow Regimes
,”
Int. J. Hydrogen Energy
43
(
20
), pp.
9870
9876
.
33.
Roberts
,
T. A.
,
Buckland
,
I.
,
Shirvill
,
L. C.
,
Lowesmith
,
B. J.
, and
Salater
,
P.
,
2004
, “
Design and Protection of Pressure Systems to Withstand Severe Fires
,”
Process Saf. Environ.
,
82
(
2
), pp.
89
96
.
34.
McCaffrey
,
B. J.
,
1979
, “
Purely Buoyant Diffusion Flames: Some Experimental Results
,”
National Bureau of Standards
, Report No. NBSIR 79-1910.
35.
Becker
,
H. A.
, and
Yamazaki
,
S.
,
1978
, “
Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames
,”
Combust. Flame
,
33
, pp.
123
149
.
36.
Tang
,
F.
,
Hu
,
L. H.
,
Delichatsios
,
M. A.
,
Lu
,
K. H.
, and
Zhu
,
W.
,
2012
, “
Experimental Study on Flame Height and Temperature Profile of Buoyant Window Spill Plume From an Under-Ventilated Compartment Fire
,”
Int. J. Heat Mass Transfer
,
55
(
1
3
), pp.
93
101
.
37.
Hu
,
L. H.
,
Tang
,
F.
,
Delichatsios
,
M. A.
, and
Lu
,
K. H.
,
2013
, “
A Mathematical Model on Lateral Temperature Profile of Buoyant Window Spill Plume From a Compartment Fire
,”
Int. J. Heat Mass Transfer
,
56
(
1-2
), pp.
447
453
.
38.
McGrattan
,
K.
,
Hostikka
,
S.
,
Floyd
,
J.
,
Baum
,
H.
,
Rehm
,
R.
,
Mell
,
W.
, and
McDermott
,
R.
,
2017
,
Fire Dynamics Simulator Technical Reference Guide
,
National Institute of Standards and Technology (NIST)
,
Gaithersburg, MD
.
39.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Monthly Weather Rev.
91
(
3
), pp.
99
164
.
40.
Ji
,
J.
,
Guo
,
F. Y.
,
Gao
,
Z. H.
,
Zhu
,
J. P.
, and
Sun
,
J. H.
,
2017
, “
Numerical Investigation on the Effect of Ambient Pressure on Smoke Movement and Temperature Distribution in Tunnel Fires
,”
Appl. Therm. Eng.
,
118
, pp.
663
669
.
41.
Li
,
Y. Z.
,
Lei
,
B.
, and
Ingason
,
H.
,
2012
, “
Scale Modeling and Numerical Simulation of Smoke Control for Rescue Stations in Long Railway Tunnels
,”
J. Fire Prot. Eng.
,
22
(
2
), pp.
101
131
.
42.
Sun
,
L. P.
,
Yan
,
H. B.
,
Liu
,
S. H.
, and
Bai
,
Y.
,
2017
, “
Load Characteristics in Process Modules of Offshore Platforms Under Jet Fire: The Numerical Study
,”
J. Loss Prevent. Proc.
,
47
, pp.
29
40
.
43.
Hankinson
,
G.
, and
Lowesmith
,
B. J.
,
2012
, “
A Consideration of Methods of Determining the Radiative Characteristics of Jet Fires
,”
Combust. Flame
,
159
(
3
), pp.
1165
1177
.
44.
Gao
,
Z. H.
,
Ji
,
J.
,
Wan
,
H. X.
,
Zhu
,
J. P.
, and
Sun
,
J. H.
,
2017
, “
Experimental Investigation on Transverse Ceiling Flame Length and Temperature Distribution of Sidewall Confined Tunnel Fire
,”
Fire Saf. J.
,
91
, pp.
371
379
.
45.
Zhang
,
X. C.
,
Tao
,
H. W.
,
Xu
,
W. B.
,
Liu
,
X. Z.
,
Li
,
X. D.
,
Zhang
,
X. L.
, and
Hu
,
L. H.
,
2017
, “
Flame Extension Lengths Beneath an Inclined Ceiling Induced by Rectangular-Source Fires
,”
Combust. Flame
,
176
, pp.
349
357
.
46.
Tao
,
C. F.
,
Shen
,
Y.
, and
Zong
,
R. W.
,
2016
, “
Experimental Determination of Flame Length of Buoyancy-Controlled Turbulent Jet Diffusion Flames From Inclined Nozzles
,”
Appl. Therm. Eng.
,
93
, pp.
884
887
.
47.
Zukoski
,
E. E.
,
Kubota
,
T.
, and
Cetegen
,
B.
,
1981
, “
Entrainment in Fire Plumes
,”
Fire Saf. J.
,
3
(
3
), pp.
107
121
.
48.
Heskestad
,
G.
,
1995
,
Fire Plume SFPE Handbook of Fire Protection Engineering
,
National Fire Protection Association
,
MA
.
You do not currently have access to this content.