Slug flow is a common flow pattern in the liquid–liquid two-phase flow in microchannels. It is an ideal pattern for mass transfer enhancement. Many factors influence the slug formation such as the channel geometries (channel widths, channel depth), flow rates of the two phase, and physical properties. In this paper, in order to investigate the liquid–liquid two-phase slug formation in a T-junction microchannel quantitatively, the volume of fluid (VOF) method is adopted to simulate the whole slug formation process. With the validated model, the effects of the disperse phase channel width, channel depth, and two-phase flow rate ratio on slug formation frequency and slug size (slug volume and slug length) are analyzed with dimensionless parameters. Dimensionless parameters include the disperse-to-continuous phase channel width ratio, height-to-width ratio, and two-phase flow rate ratio. Results show that both the channel geometry and two-phase flow rate ratio have a significant influence on slug formation. Compared with the conventional slug formation stages, a new stage called the lag stage emerges when the disperse phase channel width decreases to half of the continuous phase channel width. When the channel depth decreases to one third of the continuous phase channel width, the flow patterns become unstable and vary with the two-phase flow rate ratio. Moreover, empirical correlations are proposed to predict the slug formation frequency. The correlation between slug formation frequency and slug volume is quantified.

References

1.
Kashid
,
M. N.
,
Renken
,
A.
, and
Kiwiminsker
,
L.
,
2011
, “
Gas-Liquid and Liquid-Liquid Mass Transfer in Microstructured Reactors
,”
Chem. Eng. Sci.
,
66
(
17
), pp.
3876
3897
.
2.
Murphy
,
T.
,
Zhang
,
Q.
,
Naler
,
L.
,
Ma
,
S.
, and
Lu
,
C.
,
2017
, “
Recent Advances on Microfluidic Technologies for Single Cell Analysis
,”
Analyst
,
143
(
1
), pp.
6
8
. https://pubs.rsc.org/en/content/articlelanding/2018/an/c7an01346a
3.
Qian
,
J.
,
Chen
,
M.
,
Liu
,
X.
, and
Jin
,
Z.
,
2019
, “
A Numerical Investigation of the Flow of Nanofluids Through a Micro Tesla Valve
,”
J. Zhejiang Univ.-Sci. A
,
20
, pp.
50
60
.
4.
Seemann
,
R.
,
Brinkmann
,
M.
,
Pfohl
,
T.
, and
Herminghaus
,
S.
,
2012
, “
Droplet Based Microfluidics
,”
Rep. Prog. Phys.
,
75
(
1
), p.
016601
.
5.
Cai
,
G.
,
Xue
,
L.
,
Zhang
,
H.
, and
Lin
,
J.
,
2017
, “
A Review on Micromixers
,”
Micromachines
,
8
(
9
), p.
274
.
6.
Lee
,
C. Y.
, and
Fu
,
L. M.
,
2018
, “
Recent Advances and Applications of Micromixers
,”
Sens. Actuators B: Chem.
,
259
, pp.
677
702
.
7.
Zhao
,
C.
, and
Middelberg
,
A. P.
,
2011
, “
Two-Phase Microfluidic Flows
,”
Chem. Eng. Sci.
,
66
(
7
), pp.
1394
1411
.
8.
Chinnov
,
E. A.
,
Ron’Shin
,
F. V.
, and
Kabov
,
O. A.
,
2015
, “
Regimes of Two-Phase Flow in Micro- and Minichannels (Review)
,”
Thermophys. Aeromech.
,
22
(
3
), pp.
265
284
.
9.
Tsaoulidis
,
D.
,
Dore
,
V.
,
Angeli
,
P.
,
Plechkova
,
N. V.
, and
Seddon
,
K. R.
,
2013
, “
Flow Patterns and Pressure Drop of Ionic Liquid-Water Two-Phase Flows in Microchannels
,”
Int. J. Multiphase Flow
,
54
, pp.
1
10
.
10.
Wu
,
Z.
,
Cao
,
Z.
, and
Sundén
,
B.
,
2017
, “
Liquid-Liquid Flow Patterns and Slug Hydrodynamics in Square Microchannels of Cross-Shaped Junctions
,”
Chem. Eng. Sci.
,
174
, pp.
56
66
.
11.
Kashid
,
M. N.
,
Renken
,
A.
, and
Kiwiminsker
,
L.
,
2011
, “
Influence of Flow Regime on Mass Transfer in Different Types of Microchannels
,”
Ind. Eng. Chem. Res.
,
50
(
11
), pp.
6906
6914
.
12.
Dessimoz
,
A. L.
,
Cavin
,
L.
,
Renken
,
A.
, and
Kiwi-Minsker
,
L.
,
2008
, “
Liquid–Liquid Two-Phase Flow Patterns and Mass Transfer Characteristics in Rectangular Glass Microreactors
,”
Chem. Eng. Sci.
,
63
(
16
), pp.
4035
4044
.
13.
Wu
,
L.
,
Liu
,
X.
,
Zhao
,
Y.
, and
Chen
,
Y.
,
2017
, “
Role of Local Geometry on Droplet Formation in Axisymmetric Microfluidics
,”
Chem. Eng. Sci.
,
163
, pp.
56
67
.
14.
Timung
,
S.
,
Tiwari
,
V.
,
Singh
,
A. K.
,
Mandal
,
T. K.
, and
Bandyopadhyay
,
D.
,
2015
, “
Capillary Force Mediated Flow Patterns and Non-Monotonic Pressure Drop Characteristics of Oil-Water Microflows
,”
Can. J. Chem. Eng.
,
93
(
10
), pp.
1736
1743
.
15.
Feigl
,
K.
,
Tanner
,
F.
,
Holzapfel
,
S.
, and
Windhab
,
E.
,
2014
, “
Effect of Flow Type, Channel Height, and Viscosity on Drop Production From Micro-Pores
,”
Chem. Eng. Sci.
,
116
(
12
), pp.
372
382
.
16.
Gupta
,
A.
, and
Kumar
,
R.
,
2010
, “
Flow Regime Transition at High Capillary Numbers in a Microfluidic T-Junction: Viscosity Contrast and Geometry Effect
,”
Phys. Fluids
,
22
(
12
), p.
122001
.
17.
Xu
,
J.
,
Li
,
S.
,
Tan
,
J.
, and
Luo
,
G.
,
2008
, “
Correlations of Droplet Formation in T-Junction Microfluidic Devices: From Squeezing to Dripping
,”
Microfluid Nanofluid
,
5
(
6
), pp.
711
717
.
18.
Zhang
,
Q.
,
Liu
,
H.
,
Zhao
,
S.
,
Yao
,
C.
, and
Chen
,
G.
,
2019
, “
Hydrodynamics and Mass Transfer Characteristics of Liquid–Liquid Slug Flow in Microchannels: The Effects of Temperature, Fluid Properties and Channel Size
,”
Chem. Eng. J.
,
358
, pp.
794
805
.
19.
Kashid
,
M. N.
,
2005
, “
Internal Circulation Within the Liquid Slugs of a Liquid− Liquid Slug-Flow Capillary Microreactor
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
5003
5010
.
20.
Susanti
,
S.
,
Winkelman
,
J. G.
,
Schuur
,
B.
,
Heeres
,
H. J.
, and
Yue
,
J.
,
2016
, “
Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors
,”
Ind. Eng. Chem. Res.
,
55
(
16
), pp.
4691
4702
.
21.
Kashid
,
M. N.
,
Renken
,
A.
, and
Kiwiminsker
,
L.
,
2010
, “
CFD Modelling of Liquid-Liquid Multiphase Microstructured Reactor: Slug Flow Generation
,”
Chem. Eng. Res. Des.
,
88
(
3
), pp.
362
368
.
22.
Chen
,
N.
,
Wu
,
J.
,
Jiang
,
H.
, and
Dong
,
L.
,
2012
, “
CFD Simulation of Droplet Formation in a Wide-Type Microfluidic T-Junction
,”
J. Dispersion Sci. Technol.
,
33
(
11
), pp.
1635
1641
.
23.
Gupta
,
A.
, and
Kumar
,
R.
,
2010
, “
Effect of Geometry on Droplet Formation in the Squeezing Regime in a Microfluidic T-Junction
,”
Microfluid Nanofluid
,
8
(
6
), pp.
799
812
.
24.
Li
,
X.
,
Li
,
F.
,
Yang
,
J.
,
Kinoshita
,
H.
,
Oishi
,
M.
, and
Oshima
,
M.
,
2012
, “
Study on the Mechanism of Droplet Formation in T-Junction Microchannel
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
340
351
.
25.
De Menech
,
M.
,
Garstecki
,
P.
,
Jousse
,
F.
, and
Stone
,
H. A.
,
2008
, “
Transition From Squeezing to Dripping in a Microfluidic T-Shaped Junction
,”
J. Fluid Mech.
,
595
, pp.
141
161
.
26.
Liu
,
H.
, and
Zhang
,
Y.
,
2009
, “
Droplet Formation in a T-Shaped Microfluidic Junction
,”
J. Appl. Phys.
,
106
(
3
), p.
034906
.
27.
Bashir
,
S.
,
Rees
,
J. M.
, and
Zimmerman
,
W. B.
,
2011
, “
Simulations of Microfluidic Droplet Formation Using the Two-Phase Level Set Method
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4733
4741
.
28.
Cheah
,
M. J.
,
Kevrekidis
,
I. G.
, and
Benziger
,
J. B.
,
2013
, “
Water Slug Formation and Motion in Gas Flow Channels: The Effects of Geometry, Surface Wettability, and Gravity
,”
Langmuir
,
29
(
31
), pp.
9918
9934
.
29.
Tsaoulidis
,
D.
, and
Angeli
,
P.
,
2016
, “
Effect of Channel Size on Liquid-Liquid Plug Flow in Small Channels
,”
AIChE J.
,
62
(
1
), pp.
315
324
.
30.
Yao
,
C.
,
Liu
,
Y.
,
Xu
,
C.
,
Zhao
,
S.
, and
Chen
,
G.
,
2018
, “
Formation of Liquid–Liquid Slug Flow in a Microfluidic T-Junction: Effects of Fluid Properties and Leakage Flow
,”
AIChE J.
,
64
(
1
), pp.
346
357
.
31.
Qian
,
J.
,
Li
,
X.
,
Gao
,
Z.
, and
Jin
,
Z.
,
2019
, “
Mixing Efficiency Analysis on Droplet Formation Process in Microchannels by Numerical Methods
,”
Processes
,
7
(
1
), p.
33
.
32.
Garstecki
,
P.
,
Fuerstman
,
M. J.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2006
, “
Formation of Droplets and Bubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-Up
,”
Lab Chip
,
6
(
3
), pp.
437
446
.
33.
Christopher
,
G. F.
,
Noharuddin
,
N.
,
Taylor
,
J. A. a.
, and
Anna
,
S. L.
,
2008
, “
Experimental Observations of the Squeezing-to-Dripping Transition in T-Shaped Microfluidic Junctions
,”
Phys. Rev. E
,
78
(
3
), p.
036317
.
34.
Graaf
,
D.
,
Nisisako
,
S. V.
,
Schroen
,
T.
,
Der Sman
,
C. G.
,
Boom
,
R. G.
, and
M
,
R.
,
2006
, “
Lattice Boltzmann Simulations of Droplet Formation in a T-Shaped Microchannel
,”
Langmuir
,
22
(
9
), pp.
4144
4152
.
35.
Liu
,
Z.
,
Sunden
,
B.
, and
Wu
,
H.
,
2015
, “
Numerical Modeling of Multiple Bubbles Condensation in Subcooled Flow Boiling
,”
ASME J. Therm. Sci. Eng. Appl.
7
(
3
), p.
031003
.
36.
Mebarki
,
G.
, and
Rahal
,
S.
,
2016
, “
Passive Control of Two-Phase Flow Thermal Instabilities in a Vertical Tube Evaporator
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
4
), p.
041008
.
37.
Nisisako
,
T.
,
Torii
,
T.
, and
Higuchi
,
T.
,
2004
, “
Novel Microreactors for Functional Polymer Beads
,”
Chem. Eng. J.
,
101
(
1
), pp.
23
29
.
38.
Oishi
,
M.
,
Kinoshita
,
H.
,
Fujii
,
T.
, and
Oshima
,
M.
,
2009
, “
Confocal Micro-PIV Measurement of Droplet Formation in a T-Shaped Micro-Junction
,”
J. Phys.: Conf. Ser.
147
, p.
012061
.
39.
Glawdel
,
T.
,
Elbuken
,
C.
, and
Ren
,
C. L.
,
2012
, “
Droplet Formation in Microfluidic T-Junction Generators Operating in the Transitional Regime. I. Experimental Observations
,”
Phys. Rev. E
,
85
(
1
), p.
016322
.
40.
Glawdel
,
T.
,
Elbuken
,
C.
, and
Ren
,
C. L.
,
2012
, “
Droplet Formation in Microfluidic T-Junction Generators Operating in the Transitional Regime. II. Modeling
,”
Phys. Rev. E
,
85
(
1
), p.
016323
.
You do not currently have access to this content.