In this article, the natural convection process in a two-dimensional cold square enclosure is numerically investigated in the presence of two inline square heat sources. Two different heat source boundary conditions are analyzed, namely, case 1 (when one heat source is hot) and case 2 (when two heat sources are hot), using the in-house developed flexible forcing immersed boundary–thermal lattice Boltzmann model. The isotherms, streamlines, local, and surface-averaged Nusselt number distributions are analyzed at ten different vertical eccentric locations of the heat sources for Rayleigh number between 103 and 106. Distinct flow regimes including primary, secondary, tertiary, quaternary, and Rayleigh–Benard cells are observed when the mode of heat transfer is changed from conduction to convection and heat sources eccentricity is varied. For Rayleigh number up to 104, the heat transfer from the enclosure is symmetric for the upward and downward eccentricity of the heat sources. At Rayleigh number greater than 104, the heat transfer from the enclosure is better for downward eccentricity cases that attain a maximum when the heat sources are near the bottom enclosure wall. Moreover, the heat transfer rate from the enclosure in case 2 is nearly twice that of case 1 at all Rayleigh numbers and eccentric locations. The correlations for heat transfer are developed by relating Nusselt number, Rayleigh number, and eccentricity of the heat sources.

References

References
1.
Dash
,
S. M.
,
Lee
,
T. S.
, and
Huang
,
H.
,
2013
, “
Natural Convection From an Eccentric Square Cylinder Using a Novel Flexible Forcing IB-LBM Method
,”
Numer. Heat Transf. Part A: Appl.
,
65
, pp.
531
555
.
2.
Choi
,
C.
,
Jeong
,
S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2014
, “
Effect of Circular Cylinder’s Location on Natural Convection in a Rhombus Enclosure
,”
Int. J. Heat Mass Transf.
,
77
, pp.
60
73
.
3.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
J. Heat Transf.
,
110
, pp.
1175
1190
.
4.
Asan
,
H.
,
2000
, “
Natural Convection in an Annulus Between Two Isothermal Concentric Square Ducts
,”
Int. Commun. Heat Mass Transf.
,
27
, pp.
367
376
.
5.
Ha
,
M. Y.
,
Kim
,
I.-K.
,
Yoon
,
H. S.
,
Yoon
,
K. S.
,
Lee
,
J. R.
,
Balachandar
,
S.
, and
Chun
,
H. H.
,
2002
, “
Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure With a Square Body
,”
Numer. Heat Transf. Part A: Appl.
,
41
, pp.
183
210
.
6.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transf.
,
51
, pp.
1888
1906
.
7.
Dash
,
S. M.
, and
Lee
,
T. S.
,
2015
, “
Natural Convection in a Square Enclosure With a Square Heat Source at Different Horizontal and Diagonal Eccentricities
,”
Numer. Heat Transf. Part A: Appl.
,
68
, pp.
686
710
.
8.
Dash
,
S. M.
, and
Lee
,
T. S.
,
2014
, “
Natural Convection From Inclined Square Cylinder Using Novel Flexible Forcing IB-LBM Approach
,”
Eng. Appl. Comput. Fluid Mech.
,
8
, pp.
91
103
.
9.
Bararnia
,
H.
,
Soleimani
,
S.
, and
Ganji
,
D. D.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection Around a Horizontal Elliptic Cylinder inside a Square Enclosure
,”
Int. Commun. Heat Mass Transf.
,
38
, pp.
1436
1442
.
10.
Markatos
,
N. C.
, and
Pericleous
,
K. A.
,
1984
, “
Laminar and Turbulent Natural Convection in an Enclosed Cavity
,”
Int. J. Heat Mass Transf.
,
27
, pp.
755
772
.
11.
Moukalled
,
F.
, and
Acharya
,
S.
,
1994
, “
Laminar Natural Convection Heat Transfer in an Eccentric Rhombic Annulus
,”
Numer. Heat Transf. Part A: Appl.
,
26
, pp.
551
568
.
12.
Kalyana Raman
,
S.
,
Arul Prakash
,
K.
, and
Vengadesan
,
S.
,
2012
, “
Natural Convection From a Heated Elliptic Cylinder With a Different Axis Ratio in a Square Enclosure
,”
Numer. Heat Transf. Part A: Appl.
,
62
, pp.
639
658
.
13.
Ilinca
,
F.
, and
Hétu
,
J. F.
,
2014
, “
Immersed Boundary Solution of Natural Convection in a Square Cavity With an Enclosed Rosette-Shaped Hot Cylinder
,”
Numer. Heat Transf. Part A: Appl.
,
65
, pp.
1154
1175
.
14.
El Abdallaoui
,
M.
,
Hasnaoui
,
M.
, and
Amahmid
,
A.
,
2014
, “
Lattice-Boltzmann Modeling of Natural Convection Between a Square Outer Cylinder and an Inner Isosceles Triangular Heating Body
,”
Numer. Heat Transf. Part A: Appl.
,
66
, pp.
1076
1096
.
15.
Corcione
,
M.
,
2003
, “
Effects of the Thermal Boundary Conditions at the Sidewalls Upon Natural Convection in Rectangular Enclosures Heated From Below and Cooled From Above
,”
Int. J. Therm. Sci.
,
42
, pp.
199
208
.
16.
Lee
,
J. M.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2010
, “
Natural Convection in a Square Enclosure With a Circular Cylinder at Different Horizontal and Diagonal Locations
,”
Int. J. Heat Mass Transf.
,
53
, pp.
5905
5919
.
17.
Yoon
,
H. S.
,
Jung
,
J. H.
, and
Park
,
Y. G.
,
2012
, “
Natural Convection in a Square Enclosure With Two Horizontal Cylinders
,”
Numer. Heat Transf. Part A: Appl.
,
62
, pp.
701
721
.
18.
Kumar De
,
A.
, and
Dalal
,
A.
,
2006
, “
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transf.
,
49
, pp.
4608
4623
.
19.
Park
,
Y. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2012
, “
Natural Convection in Square Enclosure With Hot and Cold Cylinders at Different Vertical Locations
,”
Int. J. Heat Mass Transf.
,
55
, pp.
7911
7925
.
20.
Park
,
Y. G.
,
Ha
,
M. Y.
,
Choi
,
C.
, and
Park
,
J.
,
2014
, “
Natural Convection in a Square Enclosure With Two Inner Circular Cylinders Positioned at Different Vertical Locations
,”
Int. J. Heat Mass Transf.
,
77
, pp.
501
518
.
21.
Dash
,
S. M.
,
Lee
,
T. S.
, and
Huang
,
H.
,
2013
, “
A Novel Flexible Forcing Hybrid IB-Thermal LB Model for Natural Convection from a Circular Cylinder
,”
Int. J. Dyn. Fluids (IJDF)
,
9
, pp.
1
15
.
22.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2010
, “
Numerical Investigation of Natural Convection Phenomena in a Uniformly Heated Circular Cylinder Immersed in Square Enclosure Filled With Air at Different Vertical Locations
,”
Int. Commun. Heat Mass Transf.
,
37
, pp.
1115
1126
.
23.
Park
,
Y. G.
,
Ha
,
M. Y.
, and
Park
,
J.
,
2015
, “
Natural Convection in a Square Enclosure With Four Circular Cylinders Positioned at Different Rectangular Locations
,”
Int. J. Heat Mass Transf.
,
81
, pp.
490
511
.
24.
Nabavizadeh
,
S. A.
,
Talebi
,
S.
,
Sefid
,
M.
, and
Nourmohammadzadeh
,
M.
,
2012
, “
Natural Convection in a Square Cavity Containing a Sinusoidal Cylinder
,”
Int. J. Therm. Sci.
,
51
, pp.
112
120
.
25.
Dash
,
S. M.
,
Lee
,
T. S.
,
Lim
,
T. T.
, and
Huang
,
H.
,
2014
, “
A Flexible Forcing Three Dimension IB–LBM Scheme for Flow Past Stationary and Moving Spheres
,”
Comput. Fluids
,
95
, pp.
159
170
.
26.
Dash
,
S. M.
,
Lee
,
T. S.
, and
Huang
,
H.
,
2014
, “
A Novel Flexible Forcing Hybrid IB-LBM Scheme to Simulate Flow Past Circular Cylinder
,”
Int. J. Mod. Phys. C
,
25
,
1340014
.
You do not currently have access to this content.