A numerical model has been developed to simulate the growth of an equaixed binary alloy dendrite under the combined effect of thermal anisotropy and forced convection. A semi implicit–explicit approach is used where the velocity and pressure fields are solved implicitly using the SIMPLER algorithm, while energy and species conservation equations are treated explicitly. The effect of thermal anisotropy present in the solid crystal is implemented by the addition of a departure source term in the conventional isotropic heat transfer based energy equation. The departure source represents the anisotropic part of the diffusive term in the isotropic heat transfer based energy equation. Simulations were performed to find the relative effect of convection strength and thermal anisotropy on the growth rate and morphology of a dendrite. Subsequently, parametric studies were conducted to investigate the effect of thermal anisotropy ratio, inlet flow velocity, undercooling temperature, and the relative strength of the thermal to mass diffusivity ratio by analyzing the variation of the equilibrium tip velocity of the top and left arms, the arm length ratio (ALR), and the equivalent grain radius. Based on simulations, a chart has been developed, which demarcates different regimes in which convection or thermal anisotropy is the most dominant factor influencing the dendrite growth rate. The model has also been extended to study the growth of multiple dendrites with random distribution and orientation. This can be useful for the simulation of microstructure evolution under the combined effect of convection and thermal anisotropy.

References

1.
Nastac
,
L.
,
2007
,
Modeling and Simulation of Microstructure Evolution in Solidifying Alloys
, Vol.
1
,
Springer Science & Business Media
,
New York
.
2.
Nastac
,
L.
, and
TMS
,
2016
,
CFD Modeling and Simulation in Materials Processing
,
John Wiley & Sons
,
Hoboken, New Jersey
.
3.
Rappaz
,
M.
,
Bellet
,
M.
, and
Deville
,
M.
,
2010
,
Numerical Modeling in Materials Science and Engineering
, Vol.
32
,
Springer Science & Business Media
,
Berlin, Heidelberg
.
4.
Gruber
,
R.
, and
Rappaz
,
J.
,
2012
,
Finite Element Methods in Linear Ideal Magnetohydrodynamics
,
Springer Science & Business Media
,
Berlin, Heidelberg
.
5.
Karma
,
A.
, and
Rappel
,
W. J.
,
1998
, “
Quantitative Phase-Field Modeling of Dendritic Growth in Two and Three Dimensions
,”
Phys. Rev. E
,
57
(
4
), pp.
4323
4349
.
6.
Tönhardt
,
R.
, and
Amberg
,
G.
,
1998
, “
Phase-Field Simulation of Dendritic Growth in a Shear Flow
,”
J. Cryst. Growth
,
194
(
3–4
), pp.
406
425
.
7.
Beckermann
,
C.
,
Diepers
,
H. J.
,
Steinbach
,
I.
,
Karma
,
A.
, and
Tong
,
X.
,
1999
, “
Modeling Melt Convection in Phase-Field Simulations of Solidification
,”
J. Comput. Phys.
,
154
(
2
), pp.
468
496
.
8.
Jeong
,
J. H.
,
Goldenfeld
,
N.
, and
Dantzig
,
J. A.
,
2001
, “
Phase Field Model for Three-Dimensional Dendritic Growth With Fluid Flow
,”
Phys. Rev. E
,
64
(
4
),
041602
.
9.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
,
2002
, “
Phase-Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
163
194
.
10.
Ramirez
,
J. C.
,
Beckermann
,
C.
,
Karma
,
A.
, and
Diepers
,
H. J.
,
2004
, “
Phase-Field Modeling of Binary Alloy Solidification With Coupled Heat and Solute Diffusion
,”
Phys. Rev. E
,
69
(
5
),
051607
.
11.
Tourret
,
D.
, and
Karma
,
A.
,
2015
, “
Growth Competition of Columnar Dendritic Grains: A Phase-Field Study
,”
Acta Mater.
,
82
, pp.
64
83
.
12.
Takaki
,
T.
,
Ohno
,
M.
,
Shibuta
,
Y.
,
Sakane
,
S.
,
Shimokawabe
,
T.
, and
Aoki
,
T.
,
2016
, “
Two-Dimensional Phase-Field Study of Competitive Grain Growth During Directional Solidification of Polycrystalline Binary Alloy
,”
J. Cryst. Growth
,
442
, pp.
14
24
.
13.
Tourret
,
D.
,
Song
,
Y.
,
Clarke
,
A. J.
, and
Karma
,
A.
,
2017
, “
Grain Growth Competition During Thin-Sample Directional Solidification of Dendritic Microstructures: A Phase-Field Study
,”
Acta Mater.
,
122
, pp.
220
235
.
14.
Zhao
,
J.
,
Wang
,
Q.
, and
Yang
,
X.
,
2017
, “
Numerical Approximations for a Phase Field Dendritic Crystal Growth Model Based on the Invariant Energy Quadratization Approach
,”
Int. J. Numer. Methods Eng.
,
110
(
3
), pp.
279
300
.
15.
Xing
,
H.
,
Ankit
,
K.
,
Dong
,
X.
,
Chen
,
H.
, and
Jin
,
K.
,
2018
, “
Growth Direction Selection of Tilted Dendritic Arrays in Directional Solidification Over a Wide Range of Pulling Velocity: A Phase-Field Study
,”
Int. J. Heat Mass Transf.
,
117
, pp.
1107
1114
.
16.
Gao
,
J.
,
Wei
,
M.
,
Zhang
,
L.
,
Du
,
Y.
,
Liu
,
Z.
, and
Huang
,
B.
,
2018
, “
Effect of Different Initial Structures on the Simulation of Microstructure Evolution During Normal Grain Growth via Phase-Field Modeling
,”
Metall. Mater. Trans. A
,
49
, pp.
6442
6456
.
17.
Rappaz
,
M.
, and
Gandin
,
C. A.
,
1993
, “
Probabilistic Modelling of Microstructure Formation in Solidification Processes
,”
Acta Metall. Mater.
,
41
(
2
), pp.
345
360
.
18.
Gandin
,
C. A.
, and
Rappaz
,
M.
,
1997
, “
A 3D Cellular Automaton Algorithm for the Prediction of Dendritic Grain Growth
,”
Acta Mater.
,
45
(
5
), pp.
2187
2195
.
19.
Shin
,
Y. H.
, and
Hong
,
C. P.
,
2002
, “
Modeling of Dendritic Growth With Convection Using a Modified Cellular Automaton Model With a Diffuse Interface
,”
ISIJ Int.
,
42
(
4
), pp.
359
367
.
20.
Wang
,
W.
,
Lee
,
P. D.
, and
Mclean
,
M.
,
2003
, “
A Model of Solidification Microstructures in Nickel-Based Superalloys: Predicting Primary Dendrite Spacing Selection
,”
Acta Mater.
,
51
(
10
), pp.
2971
2987
.
21.
Dong
,
H. B.
, and
Lee
,
P. D.
,
2005
, “
Simulation of the Columnar-to-Equiaxed Transition in Directionally Solidified Al–Cu Alloys
,”
Acta Mater.
,
53
(
3
), pp.
659
668
.
22.
Zhao
,
Y.
,
Qin
,
R.
,
Chen
,
D.
,
Wan
,
X.
,
Li
,
Y.
, and
Ma
,
M.
,
2015
, “
A Three Dimensional Cellular Automata Model for Dendrite Growth in Non-Equilibrium Solidification of Binary Alloy
,”
Steel Res. Int.
,
86
(
12
), pp.
1490
1497
.
23.
Li
,
H.
,
Sun
,
X.
, and
Yang
,
H.
,
2016
, “
A Three-Dimensional Cellular Automata-Crystal Plasticity Finite Element Model for Predicting the Multiscale Interaction Among Heterogeneous Deformation, DRX Microstructural Evolution and Mechanical Responses in Titanium Alloys
,”
Int. J. Plast.
,
87
, pp.
154
180
.
24.
Gu
,
C.
,
Wei
,
Y.
,
Zhan
,
X.
, and
Li
,
Y.
,
2017
, “
A Three-Dimensional Cellular Automaton Model of Dendrite Growth With Stochastic Orientation During the Solidification in the Molten Pool of Binary Alloy
,”
Sci. Technol. Weld. Join.
,
22
(
1
), pp.
47
58
.
25.
Geng
,
S.
,
Jiang
,
P.
,
Ai
,
Y.
,
Chen
,
R.
,
Cao
,
L.
,
Han
,
C.
,
Liu
,
W.
, and
Liu
,
Y.
,
2018
, “
Cellular Automaton Modeling for Dendritic Growth During Laser Beam Welding Solidification Process
,”
J. Laser Appl.
,
30
(
3
),
032406
.
26.
Lian
,
Y.
,
Lin
,
S.
,
Yan
,
W.
,
Liu
,
W. K.
, and
Wagner
,
G. J.
,
2018
, “
A Parallelized Three-Dimensional Cellular Automaton Model for Grain Growth During Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
543
558
.
27.
Kim
,
Y. T.
,
Goldenfeld
,
N.
, and
Dantzig
,
J.
,
2000
, “
Computation of Dendritic Microstructures Using a Level Set Method
,”
Phys. Rev. E
,
62
(
2
), pp.
2471
2474
.
28.
Tan
,
L.
, and
Zabaras
,
N.
,
2006
, “
A Level Set Simulation of Dendritic Solidification With Combined Features of Front-Tracking and Fixed-Domain Methods
,”
J. Comput. Phys.
,
211
(
1
), pp.
36
63
.
29.
Tan
,
L.
, and
Zabaras
,
N.
,
2007
, “
A Level Set Simulation of Dendritic Solidification of Multi-Component Alloys
,”
J. Comput. Phys.
,
221
(
1
), pp.
9
40
.
30.
Tan
,
L.
, and
Zabaras
,
N.
,
2007
, “
Modeling the Growth and Interaction of Multiple Dendrites in Solidification Using a Level Set Method
,”
J. Comput. Phys.
,
226
(
1
), pp.
131
155
.
31.
Miller
,
W.
, and
Succi
,
S.
,
2002
, “
A Lattice Boltzmann Model for Anisotropic Crystal Growth From Melt
,”
J. Stat. Phys.
,
107
(
1–2
), pp.
173
186
.
32.
Kang
,
Q.
,
Zhang
,
D.
,
Lichtner
,
P. C.
, and
Tsimpanogiannis
,
I. N.
,
2004
, “
Lattice Boltzmann Model for Crystal Growth From Supersaturated Solution
,”
Geophys. Res. Lett.
31
(
21
), pp.
L21604
-
1–5
.
33.
Chatterjee
,
D.
, and
Chakraborty
,
S.
,
2006
, “
A Hybrid Lattice Boltzmann Model for Solid–Liquid Phase Transition in Presence of Fluid Flow
,”
Phys. Lett. A
,
351
(
4–5
), pp.
359
367
.
34.
Chakraborty
,
S.
, and
Chatterjee
,
D.
,
2007
, “
An Enthalpy-Based Hybrid Lattice-Boltzmann Method for Modelling Solid–Liquid Phase Transition in the Presence of Convective Transport
,”
J. Fluid Mech.
,
592
, pp.
155
175
.
35.
Jelinek
,
B.
,
Eshraghi
,
M.
,
Felicelli
,
S.
, and
Peters
,
J. F.
,
2014
, “
Large-Scale Parallel Lattice Boltzmann–Cellular Automaton Model of Two-Dimensional Dendritic Growth
,”
Comput. Phys. Commun.
,
185
(
3
), pp.
939
947
.
36.
Huang
,
H.
,
Lu
,
X. Y.
, and
Krafczyk
,
M.
,
2014
, “
Numerical Simulation of Unsteady Flows in Czochralski Crystal Growth by Lattice Boltzmann Methods
,”
Int. J. Heat Mass Transf.
,
74
, pp.
156
163
.
37.
Eshraghi
,
M.
,
Hashemi
,
M.
,
Jelinek
,
B.
, and
Felicelli
,
S. D.
,
2017
, “
Three-Dimensional Lattice Boltzmann Modeling of Dendritic Solidification Under Forced and Natural Convection
,”
Metals
,
7
(
11
),
474
.
38.
Sun
,
D.
,
Pan
,
S.
,
Han
,
Q.
, and
Sun
,
B.
,
2016
, “
Numerical Simulation of Dendritic Growth in Directional Solidification of Binary Alloys Using a Lattice Boltzmann Scheme
,”
Int. J. Heat Mass Transf.
,
103
, pp.
821
831
.
39.
Cartalade
,
A.
,
Younsi
,
A.
, and
Plapp
,
M.
,
2016
, “
Lattice Boltzmann Simulations of 3D Crystal Growth: Numerical Schemes for a Phase-Field Model With Anti-Trapping Current
,”
Comput. Math. Appl.
,
71
(
9
), pp.
1784
1798
.
40.
Younsi
,
A.
, and
Cartalade
,
A.
,
2016
, “
On Anisotropy Function in Crystal Growth Simulations Using Lattice Boltzmann Equation
,”
J. Comput. Phys.
,
325
, pp.
1
21
.
41.
Sun
,
D.
,
Wang
,
Y.
,
Yu
,
H.
, and
Han
,
Q.
,
2018
, “
A Lattice Boltzmann Study on Dendritic Growth of a Binary Alloy in the Presence of Melt Convection
,”
Int. J. Heat Mass Transf.
,
123
, pp.
213
226
.
42.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1987
, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. Model Formulation
,”
Int. J. Heat Mass Transf.
,
30
(
10
), pp.
2161
2170
.
43.
Bennon
,
W. D.
, and
Incropera
,
F. P.
,
1987
, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—II. Application to Solidification in a Rectangular Cavity
,”
Int. J. Heat Mass Transf.
,
30
(
10
), pp.
2171
2187
.
44.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. T. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transf. A Appl.
,
13
(
3
), pp.
297
318
.
45.
Voller
,
V. R.
,
Brent
,
A. D.
, and
Prakash
,
C.
,
1989
, “
The Modelling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transf.
,
32
(
9
), pp.
1719
1731
.
46.
Chakroborty
,
S.
, and
Dutta
,
P.
,
2001
, “
A Generalized Formulation for Evaluation of Latent Heat Functions in Enthalpy-Based Macroscopic Models for Convection-Diffusion Phase Change Processes
,”
Metall. Mater. Trans. B
,
32
(
3
), pp.
562
564
.
47.
Chakraborty
,
S.
, and
Dutta
,
P.
,
2003
, “
Three-Dimensional Double-Diffusive Convection and Macrosegregation During Non-Equilibrium Solidification of Binary Mixtures
,”
Int. J. Heat Mass Transf.
,
46
(
12
), pp.
2115
2134
.
48.
Pal
,
D.
,
Bhattacharya
,
J.
,
Dutta
,
P.
, and
Chakraborty
,
S.
,
2006
, “
An Enthalpy Model for Simulation of Dendritic Growth
,”
Numer. Heat Transf. B Fund.
,
50
(
1
), pp.
59
78
.
49.
Voller
,
V. R.
,
2008
, “
An Enthalpy Method for Modeling Dendritic Growth in a Binary Alloy
,”
Int. J. Heat Mass Transf.
,
51
(
3–4
), pp.
823
834
.
50.
Kao
,
A.
,
Djambazov
,
G.
,
Pericleous
,
K.
, and
Voller
,
V.
,
2009
, “
Thermoelectric MHD in Dendritic Solidification
,”
Magnetohydrodynamics
,
45
(
3
), pp.
305
315
.
51.
Kao
,
A.
,
Pericleous
,
K.
,
Patel
,
M. K.
, and
Voller
,
V.
,
2009
, “
Effects of Magnetic Fields on Crystal Growth
,”
Int. J. Cast Metals Res.
,
22
(
1–4
), pp.
147
150
.
52.
Kao
,
A.
,
Lee
,
P. D.
, and
Pericleous
,
K.
,
2014
, “
Influence of a Slow Rotating Magnetic Field in Thermoelectric Magnetohydrodynamic Processing of Alloys
,”
ISIJ Int.
,
54
(
6
), pp.
1283
1287
.
53.
Kao
,
A.
,
Cai
,
B.
,
Lee
,
P. D.
, and
Pericleous
,
K.
,
2017
, “
The Effects of Thermoelectric Magnetohydrodynamics in Directional Solidification Under a Transverse Magnetic Field
,”
J. Cryst. Growth
,
457
, pp.
270
274
.
54.
Karagadde
,
S.
,
Bhattacharya
,
A.
,
Tomar
,
G.
, and
Dutta
,
P.
,
2012
, “
A Coupled VOF–IBM–Enthalpy Approach for Modeling Motion and Growth of Equiaxed Dendrites in a Solidifying Melt
,”
J. Comput. Phys.
,
231
(
10
), pp.
3987
4000
.
55.
Bhattacharya
,
A.
, and
Dutta
,
P.
,
2013
, “
An Enthalpy-Based Model of Dendritic Growth in a Convecting Binary Alloy Melt
,”
Int. J. Numer. Methods Heat Fluid Flow
,
23
(
7
), pp.
1121
1135
.
56.
Bhattacharya
,
A.
,
Kiran
,
A.
,
Karagadde
,
S.
, and
Dutta
,
P.
,
2014
, “
An Enthalpy Method for Modeling Eutectic Solidification
,”
J. Comput. Phys.
,
262
, pp.
217
230
.
57.
Bhattacharya
,
A.
,
Karagadde
,
S.
, and
Dutta
,
P.
,
2013
, “
An Equivalent Undercooling Model to Account for Flow Effect on Binary Alloy Dendrite Growth Rate
,”
Int. Commun. Heat Mass Transf.
,
47
, pp.
15
19
.
58.
Bhattacharya
,
A.
, and
Dutta
,
P.
,
2014
, “
Effect of Shrinkage Induced Flow on Binary Alloy Dendrite Growth: An Equivalent Undercooling Model
,”
Int. Commun. Heat Mass Transf.
,
57
, pp.
216
220
.
59.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
60.
Powell
,
R. W.
,
Woodman
,
M. J.
, and
Tye
,
R. P.
,
1963
, “
Further Measurements Relating to the Anisotropic Thermal Conductivity of Gallium
,”
Br. J. Appl. Phys.
,
14
(
7
), pp.
432
435
.
61.
Gau
,
C.
, and
Viskanta
,
R.
,
1985
, “
Effect of Natural Convection on Solidification From Above and Melting From Below of a Pure Metal
,”
Int. J. Heat Mass Transf.
,
28
(
3
), pp.
573
587
.
62.
Gau
,
C.
, and
Viskanta
,
R.
,
1985
, “
Effect of Crystal Anisotropy on Heat Transfer During Melting and Solidification of a Metal
,”
J. Heat Transf.
,
107
(
3
), pp.
706
708
.
63.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
J. Heat Transf.
,
108
(
1
), pp.
174
181
.
64.
Kaenton
,
J.
,
Davis
,
G. D. V.
,
Leonardi
,
E.
, and
Leong
,
S. S.
,
2002
, “
A Numerical Study of Anisotropy and Convection During Solidification
,”
Numer. Heat Transf. B Fund.
,
41
(
3–4
), pp.
309
323
.
65.
Kaenton
,
J.
,
Semma
,
E.
,
Timchenko
,
V.
,
El Ganaoui
,
M.
,
Leonardi
,
E.
, and
de Vahl Davis
,
G.
,
2004
, “
Effects of Anisotropy and Solid/Liquid Thermal Conductivity Ratio on Flow Instabilities During Inverted Bridgman Growth
,”
Int. J. Heat Mass Transf.
,
47
(
14–16
), pp.
3403
3413
.
66.
Sahoo
,
S. K.
,
Rath
,
P.
, and
Das
,
M. K.
,
2016
, “
Numerical Study of Phase Change Material Based Orthotropic Heat Sink for Thermal Management of Electronics Components
,”
Int. J. Heat Mass Transf.
,
103
, pp.
855
867
.
67.
Jakhar
,
A.
,
Bhattacharya
,
A.
,
Rath
,
P.
, and
Mahapatra
,
S. K.
,
2018
, “
Effect of Thermal Anisotropy on Binary Alloy Dendrite Growth
,”
Int. J. Heat Mass Transf.
,
127
, pp.
1114
1127
.
68.
Ge
,
Q.
,
Yap
,
Y. F.
,
Zhang
,
M.
, and
Chai
,
J. C.
,
2013
, “
Modeling Anisotropic Diffusion Using a Departure From Isotropy Approach
,”
Comput. Fluids
,
86
, pp.
298
309
.
69.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
, Vol.
3
,
Cambridge University Press
,
Cambridge
.
70.
Voller
,
V. R.
,
2006
, “
A Similarity Solution for Solidification of an Under-Cooled Binary Alloy
,”
Int. J. Heat Mass Transf.
,
49
(
11–12
), pp.
1981
1985
.
71.
Han
,
J. C.
,
2016
,
Analytical Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.