In many convective liquid–vapor phase-change heat transfer engineering applications, cryogenic fluids are widely used in industrial processes, spacecraft and cryosurgery systems, and so on. For example, cryogens are usually used as liquid fuels such as liquid hydrogen, liquid methane, and liquid oxygen in the rocket industry, liquid nitrogen and helium are frequently used to cool superconducting magnetic device for medical applications. In these systems, proper transport, handling, and storage of cryogenic fluids are of extreme importance. Among all the cryogenic transport processes performed in room temperatures, quenching, also termed chilldown, is an unavoidable initial, transient phase-change heat transfer process that brings the system down to the cryogenic condition. The Leidenfrost temperature or rewet temperature that signals the end of film boiling is practically considered the completion point of a quenching process. Therefore, rewet temperature has been considered the most important parameter for the engineering design of cryogenic thermal management systems. As most of the previous correlations for predicting the Leidenfrost temperature and the rewet temperature have been developed for water, they are shown to disagree with recent liquid nitrogen pipe chilldown experiments in upward and downward flow directions over a wide range of flow rates, pressures, and degrees of inlet subcooling. In addition to a complete review of the literature, two modified correlations are presented, one based on bubble growth and another based on the theoretical maximum limit of superheat. Each correlation performs well over the entire dataset.

References

References
1.
Carbajo
,
J.
,
1985
, “
A Study on the Rewetting Temperature
,”
Nucl. Eng. Des.
,
84
, pp.
21
52
.
2.
Kalinin
,
E. K.
,
1969
, “
Investigation of the crisis of film boiling in channels, Two-Phase Flow and Heat Transfer in Rod Bundles
,”
Proceedings of the ASME Winter Annual Meeting
,
Los Angeles, CA
,
Nov. 16–20
.
3.
Carey
,
V. P.
,
2008
,
Liquid-Vapor Phase-Change Phenomena
,
2nd ed.
,
Taylor & Francis Group, LLC
,
New York, NY
.
4.
Baumeister
,
K. J.
and
Simon
,
F. F.
,
1972
, “
Leidenfrost Temperature – Its Correlation for Liquid Metals, Cryogens, Hydrocarbons and Water
,”
Trans. ASME J. Heat Transf.
,
94-C
, pp.
166
173
.
5.
Darr
,
S. R.
,
Hu
,
H.
,
Shaeffer
,
R.
,
Chung
,
J. N.
,
Hartwig
,
J. W.
, and
Majumdar
,
A.
,
2015
, “
Numerical Simulation of the Liquid Nitrogen Chilldown of a Vertical Tube
,”
53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
.
6.
Darr
,
S. R.
,
Hu
,
H.
,
Glikin
,
N.
,
Hartwig
,
J.
,
Majumdar
,
A.
,
LeClair
,
A.
, and
Chung
,
J.
,
2016
, “
An Experimental Study on Terrestrial Cryogenic Tube Chilldown: II Effect of Flow Direction With Respect to Gravity
,”
Int. J. Heat Mass Transf.
,
103
, pp.
1243
1260
.
7.
Berenson
,
P. J.
,
1961
, “
Film Boiling Heat Transfer From a Horizontal Surface
,”
Trans. ASME J. Heat Transf.
,
83
, pp.
351
358
.
8.
N.
Zuber
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer (Thesis)
,”
University of California
,
Los Angeles
, Technical Report No. AECU-4439.
9.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Plane
,”
Proc. R. Soc. Lond.
,
A-201
, p.
192
.
10.
Berenson
,
P.
,
1960
, “
Transition Boiling Heat Transfer from a Horizontal Surface
,”
Massachusetts Institute of Technology, Heat Transfer Laboratory
,
Cambridge, MA
, Technical Report No. 17.
11.
Bromley
,
L.
,
1950
, “
Heat Transfer in Stable Film Boiling
,”
Chem. Eng. Prog.
,
46
, pp.
221
227
.
12.
Keshock
,
E.
, and
Bell
,
K.
,
1969
, “
Heat Transfer Coefficient Measurements of Liquid Nitrogen Drops Undergoing Film Boiling
,”
Adv. Cryog. Eng.
,
1970
, pp.
271
282
.
13.
Henry
,
R. E.
,
1974
, “
A Correlation for the Minimum Film Boiling Temperature
,”
AIChE Symp. Ser.
,
70
(
138
), pp.
81
90
.
14.
Iloeje
,
O.
,
Plummer
,
D. N.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1975
, “
An Investigation of the Collapse and Surface Rewet in Film Boiling in Forced Vertical Flow
,”
J. Heat Transf.
,
97
(
2
), pp.
166
172
.
15.
Spiegler
,
P.
,
Hopenfeld
,
J.
,
Silberberg
,
M.
,
Bumpus
,
C.
Jr.
, and
Norman
,
A.
,
1963
, “
Onset of Stable Film Boiling and the Foam Limit
,”
Int. J. Heat Mass Transf.
,
6
, pp.
987
994
.
16.
Temperley
,
H.
,
1947
, “
The Behavior of Water Under Hydrostatic Tension: III
,”
Proc. Phys. Soc.
,
59
(
2
), pp.
199
208
.
17.
Spiegler
,
P.
,
Hopenfeld
,
J.
, and
Norman
,
A.
,
1963
, “
Operating Conditions of Bubble Chamber Liquids
,”
Rev. Sci. Instrum.
,
34
, pp.
308
309
.
18.
Lienhard
,
J.
, and
Schrock
,
V.
,
1966
, “
Generalized Displacement of the Nucleate Boiling Heat-Flux Curve, With Pressure Change
,”
Int. J. Heat Mass Transf.
,
9
, pp.
355
363
.
19.
Lienhard
,
J.
,
1976
, “
Correlation for the Limiting Liquid Superheat
,”
Chem. Eng. Sci.
,
31
(
9
), pp.
847
849
.
20.
Simon
,
F. F.
, and
Simoneau
,
R. J.
,
1969
, “
Transition From Film to Nucleate Boiling in Vertical Forced Flow
,” ASME Paper 69-HT-26.
21.
Bernardin
,
J.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
J. Heat Transf.
,
121
(
4
), pp.
894
903
.
22.
De Salve
,
M.
, and
Panella
,
B.
,
1982
, “
Analytical Model for Bottom Reflooding Thermal-Hydraulics in Circular Ducts and Comparison With Experimental Results
,”
Heat Transfer in Nuclear Reactor Safety
, Hemisphere Publishing Corporation, New York, NY. pp.
747
762
.
23.
Yao
,
S.
, and
Henry
,
R.
,
1978
, “
An Investigation of the Minimum Film Boiling Temperature on Horizontal Surfaces
,”
J. Heat Transf.
,
100
(
2
), pp.
260
267
.
24.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2002
, “
A Cavity Activation and Bubble Growth Model of the Leidenfrost Point
,”
J. Heat Transf.
,
124
, pp.
864
874
.
25.
Segev
,
A.
, and
Bankoff
,
S.
,
1980
, “
The Role of Adsorption in Determining the Minimum Film Boiling Temperature
,”
Int. J. Heat Mass Transf.
,
23
, pp.
637
642
.
26.
Schroeder-Richter
,
D.
, and
Bartsch
,
G.
,
1990
, “
The Leidenfrost Phenomenon Caused by a Thermo-Mechanical Effect of Transition Boiling: A Revisited Problem of Non-Equilibrium Thermodynamics
,”
Fundamentals of Phase Change: Boiling and Condensation
, American Society of Mechanical Engineers, New York, NY, pp.
13
20
.
27.
Lienhard
,
J. H.
,
1982
, “
Corresponding States Correlations of the Spinodal and Homogeneous Nucleation Limits
,”
J. Heat Transf.
,
104
(
2
), pp.
379
381
.
28.
Blander
,
M.
, and
Katz
,
J.
,
1975
, “
Bubble Nucleation in Liquids
,”
AIChE J.
,
21
(
5
), pp.
833
848
.
This content is only available via PDF.
You do not currently have access to this content.