The shell condenser is one of the key components of underwater vehicles. To study its thermal performance and to design a more efficient structure, a computational model is generated to simulate condensation inside straight and helical channels. The model combines empirical correlations and a MATLAB-based iterative algorithm. The vapor quality is used as a sign of the degree of condensation. Three calculation models are compared, and the optimal model is verified by a comparison of simulated results and available experimental data. Several cases are designed to reveal the effects of various inlet conditions and the diameter-over-radius (Dh/R) ratio. The results show that the inlet temperature and mass rate significantly affect the flow and heat transfer in the condensation process, the heat transfer capabilities of the helical channels are much better than that of the straight channel, and both the heat transfer coefficient and total pressure drop increase with the decrease of Dh/R. This study may provide a useful reference for performance prediction and structural design of shell condensers used for underwater vehicles and may provide a relatively universal prediction model for condensation in channels.

References

References
1.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
2.
Hwang
,
Y. W.
, and
Kim
,
M. S.
,
2006
, “
The Pressure Drop in Microtubes and the Correlation Development
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1804
1812
.
3.
Sun
,
L.
, and
Mishima
,
K.
,
2009
, “
Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels
,”
Int. J. Multiphase Flow
,
35
(
1
), pp.
47
54
.
4.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Adiabatic Two-Phase Pressure Drop in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2732
2739
.
5.
Zhang
,
W.
,
Hibiki
,
T.
, and
Mishima
,
K.
,
2010
, “
Correlations of Two-Phase Frictional Pressure Drop and Void Fraction in Mini-Channel
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
453
465
.
6.
Derby
,
M.
,
Lee
,
H. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2012
, “
Condensation Heat Transfer in Square, Triangular, and Semi-Circular Mini-Channel
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
187
197
.
7.
Li
,
P.
,
Chen
,
Z.
, and
Shi
,
J.
,
2018
, “
Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel
,”
J. Microgravity Sci. Technol.
,
30
(
1-2
), pp.
19
24
.
8.
Noori Rahim Abadi
,
S. M. A.
,
Meyer
,
J. P.
, and
Dirker
,
J.
,
2018
, “
Numerical Simulation of Condensation Inside an Inclined Smooth Tube
,”
Chem. Eng. Sci.
,
182
, pp.
132
145
.
9.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11-12
), pp.
3246
3261
.
10.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow
,”
Int. J. Heat Mass Transfer
,
56
(
1-2
), pp.
238
250
.
11.
Kang
,
H. J.
,
Lin
,
C. X.
, and
Ebadian
,
M. A.
,
2000
, “
Condensation of R134a Flowing Inside Helicoidal Pipe
,”
Int. J. Heat Mass Transfer
,
43
(
14
), pp.
2553
2564
.
12.
Yu
,
J.
,
Chen
,
J.
,
Li
,
F.
,
Cai
,
W.
,
Lu
,
L.
, and
Jiang
,
Y.
,
2018
, “
Experimental Investigation of Forced Convective Condensation Heat Transfer of Hydrocarbon Refrigerant in a Helical Tube
,”
Appl. Therm. Eng.
,
129
, pp.
1634
1644
.
13.
Bai
,
C.
,
Han
,
Y.
,
Yi
,
Y.
,
Shi
,
X.
,
Guo
,
Z.
, and
Feng
,
Q.
,
2016
, “
Experimental Investigation of the Heat Transfer in Small Channels of the Underwater Vehicle
,”
Ship Sci. Technol.
,
38
(
3
), pp.
50
54
.
14.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
15.
Debray
,
F.
,
Franc
,
J. P.
, and
Maitre
,
T.
,
2011
, “
Measure des Coefficient de Transfer Thermique Parconvection Foree en Mini-Canauc
,”
Mech. Industry
,
23
(
2
), pp.
443
454
.
16.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels - Part 2: Heat Transfer Results and Correlation Technique
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
984
994
.
17.
Soliman
,
H. M.
,
1986
, “
The Mist-Annular Transition During Condensation and its Influence on the Heat Transfer Mechanism
,”
Int. J. Multiphase Flow
,
12
(
2
), pp.
277
288
.
18.
Bai
,
C.
,
2016
, “
Research on the Characteristics of Condensation Heat Transfer in Small Channels of the Torpedo
,”
Master Degree thesis
,
China Ship Research and Development Academy
,
Xian, Shanxi
.
19.
Yang
,
S.
, and
Tao
,
W.
,
2006
,
Heat Transfer [M]
,
Higher Education Press
,
Beijing
, Chap. 6.
20.
Ju
,
H.
,
Huang
,
Z.
,
Xu
,
Y.
,
Duan
,
B.
, and
Yu
,
Y.
,
2001
, “
Hydraulic Performance of Small Bending Radius Helical Coil-Pipe
,”
Nucl. Sci. Technol.
,
38
(
10
), pp.
826
831
.
21.
EI-Sayed Mosaad
,
M.
,
AI-Hajeri
,
M.
,
AI-Ajmi
,
R.
, and
Koliub
,
Abo. M.
,
2009
, “
Heat Transfer and Pressure Drop of R-134a Condensation in a Coiled, Double Tube
,”
Heat Mass Transfer
,
45
(
8
), pp.
1107
-
1115
.
22.
Srinivasan
,
P. S.
,
Nandapurkar
,
S. S.
, and
Holland
,
F. A.
,
1970
, “
Friction Factor for Coil
,”
Trans. Inst. Chem. Eng.
,
48
(
4–6
), pp.
156
161
.
23.
Gupta
,
A.
, and
Kumar
,
R.
,
2014
, “
Condensation of R-134a Inside a Helically Coiled Tube-in-Shell Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
279
289
.
You do not currently have access to this content.