This article presents a numerical study of particle deposition in two fluids, i.e., liquid and droplet flow in a single row tube bundle heat exchanger. The tubes in the heat exchanger are modeled as heating sources. Two level-set functions are used to capture the liquid-droplet interface and the liquid-deposit front. The effects of different parameters, including Damköhler number, thermal conductivity of the deposit, viscosity of the liquid, and the heating power of the tube on the flow and heat transfer, are investigated. The deposit profiles on the tube surface are analyzed. Comparison is made for the averaged Nusselt number for the case without and with deposition. It is found that the tube surface has a thicker deposit at the upstream facing side compared with that of the downstream facing side. Generally, the heat transfer rate reduces with the growth of the deposit. Under certain conditions, heat transfer can be increased because of the increase in fluid velocity due to blockage of the flow area by the deposit. The averaged Nusselt number oscillated temporally in response to the droplet movement across the tube. Generally, the temperature at the liquid-deposit front decreases with thicker deposit formed. The averaged Nusselt number along the liquid-deposit front increases to a critical value initially, and it starts to decrease with the growth of the deposit.

References

References
1.
Tian
,
E.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2017
, “
Research on a New Type Waste Heat Recovery Gravity Heat Pipe Exchanger
,”
Appl. Therm. Eng
,
188
, pp.
586
594
.
2.
Northcutt
,
B.
, and
Mudawar
,
I.
,
2012
, “
Enhanced Design of Cross-Flow Microchannel Heat Exchanger Module for High-Performance Aircraft Gas Turbine Engines
,”
J. Heat Transfer
,
134
,
061801
.
3.
Waring
,
M. S.
, and
Siegel
,
J. A.
,
2008
, “
Particle Loading Rates for HVAC Filters, Heat Exchangers, and Ducts
,”
Indoor Air J.
,
18
, pp.
209
224
.
4.
Oduro
,
S. D.
,
2012
, “
Assessing the Effect of Blockage of Dirt on Engine Radiator in the Engine Cooling System
,”
Int. J. Autom. Eng.
,
2
, pp.
163
171
.
5.
Li
,
M. J.
,
Tang
,
S. Z.
,
Wang
,
F. L.
,
Zhao
,
Q. X.
, and
Tao
,
W. Q.
,
2017
, “
Gas-Side Fouling, Erosion and Corrosion of Heat Exchangers for Middle/Low Temperature Waste Heat Utilization: A Review on Simulation and Experiment
,”
Appl. Therm. Eng.
,
126
, pp.
737
761
.
6.
Kuźnicka
,
B.
,
2009
, “
Erosion–Corrosion of Heat Exchanger Tubes
,”
Eng. Fail. Anal.
,
16
, pp.
2382
2387
.
7.
Sunden
,
B.
,
1980
, “
Conjugated Heat Transfer from Circular Cylinders in Low Reynolds Number Flow
,”
Int. J. Heat Mass Transfer.
,
23
, pp.
1359
1367
.
8.
Brahim
,
F.
,
Augustin
,
W.
, and
Bohnet
,
M.
,
2003
, “
Numerical Simulation of the Fouling Process
,”
Int. J. Therm. Sci.
,
42
, pp.
323
334
.
9.
Kaptan
,
Y.
,
Buyruk
,
E.
, and
Ecder
,
A.
,
2008
, “
Numerical Investigation of Fouling on Cross-Flow Heat Exchanger Tubes With Conjugated Heat Transfer Approach
,”
Int. Commun. Heat Mass Transfer.
,
35
, pp.
1153
1158
.
10.
Han
,
H.
,
He
,
Y. L.
,
Tao
,
W. Q.
, and
Li
,
Y. S.
,
2014
, “
A Parameter Study of Tube Bundle Heat Exchangers for Fouling Rate Reduction
,”
Int. J. Heat Mass Transfer.
,
72
, pp.
210
221
.
11.
Fu
,
L.
,
Liu
,
P. F.
, and
Li
,
G. J.
,
2017
, “
Numerical Investigation on Ash Fouling Characteristics of Flue Gas Heat Exchanger
,”
Appl. Therm. Eng.
,
123
, pp.
891
900
.
12.
Hosseini
,
S. B.
,
Khoshkhoo
,
R. H.
, and
Malabad
,
S. M. J.
,
2017
, “
Experimental and Numerical Investigation on Particle Deposition in a Compact Heat Exchanger
,”
Appl. Therm. Eng.
,
115
, pp.
406
417
.
13.
Mavridou
,
S. G.
, and
Bouris
,
D. G.
,
2012
, “
Numerical Evaluation of a Heat Exchanger With Inline Tubes of Different Size for Reduced Fouling Rates
,”
Int. J. Heat Mass Transfer.
,
55
, pp.
5185
5195
.
14.
Zhan
,
F. L.
,
Zhuang
,
D. W.
,
Ding
,
G. L.
, and
Tang
,
J. J.
,
2016
, “
Numerical Model of Particle Deposition on Fin Surface of Heat Exchanger
,”
Int. J. Refrig.
,
72
, pp.
27–
40
.
15.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, pp.
12
49
.
16.
Ge
,
Q.
,
Yap
,
Y. F.
,
Vargas
,
F. M.
,
Zhang
,
M.
, and
Chai
,
J. C.
,
2012
, “
A Total Concentration Method for Modeling of Deposition
,”
Numer. Heat Transfer, Part B
,
61
, pp.
311
328
.
17.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
, pp.
25
37
.
18.
Yap
,
Y. F.
,
Vargas
,
F. M.
, and
Chai
,
J. C.
,
2013
, “
A Level-Set Method for Convective-Diffusive Particle Deposition
,”
Appl. Math. Model.
,
37
, pp.
5245
5259
.
19.
Li
,
H. Y.
,
Yap
,
Y. F.
,
Lou
,
J.
,
Chai
,
J. C.
, and
Shang
,
Z.
,
2015
, “
Numerical Investigation of Conjugated Heat Transfer in a Channel With a Moving Depositing Front
,”
Int. J. Therm. Sci.
,
88
, pp.
136
147
.
20.
Tu
,
X. C.
,
Wu
,
Y. T.
, and
Kim
,
H. B.
,
2018
, “
Improvement of Two-Phase Flow Distribution in the Header of Plate-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer.
,
123
, pp.
523
533
.
21.
Mroue
,
H.
,
Ramos
,
J. B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2017
, “
Performance Evaluation of a Multi-Pass Air-to-Water Thermosyphon-Based Heat Exchanger
,”
Energy
,
139
, pp.
1243
1260
.
22.
Zhang
,
Z.
,
Mehendale
,
S.
,
Tian
,
J. J.
, and
Li
,
Y. Z.
,
2017
, “
Experimental Investigation of Two-Phase Flow Distribution in Plate-Fin Heat Exchangers
,”
Chem. Eng. Res. Des.
,
120
, pp.
34
46
.
23.
Ramirez-Jaramillo
,
E.
,
Lira-Galeana
,
C.
, and
Manero
,
O.
,
2006
, “
Modeling Asphaltene Deposition in Production Pipelines
,”
Energy Fuels
,
20
, pp.
1184
1196
.
24.
Apte
,
M. S.
,
Matzain
,
A.
,
Zhang
,
H. Q.
,
Volk
,
M.
,
Brill
,
J. P.
, and
Creek
,
J. L.
2001
, “
Investigation of Paraffin Deposition During Multiphase Flow in Pipelines and Wellbores-Part 2: Modeling
,”
J. Energy Resour. Technol.
,
123
, pp.
150
186
.
25.
Huang
,
Z.
,
Senra
,
M.
,
Kapoor
,
R.
, and
Fogler
,
H. S.
,
2011
, “
Wax Deposition Modeling of Oil/Water Stratified Channel Flow
,”
AIChE J.
,
57
, pp.
841
851
.
26.
Yap
,
Y. F.
,
Goharzadeh
,
A.
,
Vargas
,
F. M.
, and
Chai
,
J. C.
,
2014,
Particle deposition in a two-fluid environment
,”
Presented at 67th Annual Meeting of the APS Division of Fluid Dynamics
,
San Francisco, CA, USA
,
Nov. 23
.
27.
Li
,
H. Y.
,
Yap
,
Y. F.
,
Lou
,
J.
,
Chai
,
J. C.
, and
Shang
,
Z.
,
2017
, “
Conjugate Heat Transfer in Stratified Two-Fluid Flows With a Growing Deposit Layer
,”
Appl. Therm. Eng.
,
113
, pp.
215
228
.
28.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
, pp.
146
159
.
29.
Yap
,
Y. F.
,
Chai
,
J. C.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Zhang
,
H. Y.
,
2006
, “
A Global Mass Correction Scheme for the Level-Set Method
,”
Numer. Heat Transfer, Part B
,
50
, pp.
455
472
.
30.
Chen
,
S.
,
Merriman
,
B.
,
Osher
,
S.
, and
Smereka
,
P.
,
1995
, “
A Simple Level Set Method for Solving Stefan Problems
,”
J. Comput. Phys.
,
135
, pp.
8
29
.
31.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modelling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publisher
,
New York
.
33.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Prentice Education Limited
,
England
.
34.
Shu
,
C. W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes
,”
J. Comput. Phys.
,
77
, pp.
439
471
.
35.
Jiang
,
G. S.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
, pp.
2126
2143
.
36.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level-Set Method
,”
J. Comput. Phys.
,
155
, pp.
410
438
.
You do not currently have access to this content.