While a number of liquids are preferred in many heating and cooling applications, their thermal capacity can be a limiting factor in many thermal systems. Therefore, a series of methods such as use of mixtures of two or more fluids, emulsions, phase change materials, and more recently nanoparticle enriched fluids have been proposed. The impact of adding aluminum and copper nanoparticles to water in a closed-loop radiator has been investigated analytically and numerically. Heat transfer performances of different working fluids are studied under the same boundary conditions. The analytical and numerical models including external and internal flow domains of the radiator have been developed, and free convection air cooling has been considered over external surfaces of a radiator. Both plain and nanoparticle added fluid cases are analyzed individually to differentiate the impact over heat transfer. The results indicate that the presence of nanoparticles effectively raised the convective heat transfer coefficient and thus the performance of the radiator system increased by 2.1% and 0.6%, respectively, in comparison to plain water operating condition. Furthermore, the radiator tube length has been shortened by 2.0% and 0.75% for both Al and Cu nanoparticle filled fluid, respectively, to obtain the same thermal performance at a single tube. The total required heat transfer surface area is also reduced by 2.0% and 1.15% for Al and Cu, respectively. Finally, a comparison between analytical and numerical models has been found to be in a good agreement of heat transfer coefficient and Nusselt number.

References

References
1.
Benelmekki
,
M.
,
2014
, “
An Introduction to Nanoparticles and Nanotechnology
,”
Designing Hybrid Nanoparticles
, Vol.
2
,
Morgan & Claypool Publishers
, pp.
1
14
.
2.
Sivashanmugam
,
P.
,
2012
, “
Application of Nanofluids in Heat Transfer
,” An Overview of Heat Transfer Phenomena, InTech, Rijeka, Croatia, pp.
411
440
.
3.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
4.
Holman
,
J. P.
,
2010
,
Heat Transfer
,
Mc Graw- Hill Series in Mechanical Engineering, Avenue of the Americas
,
New York
.
5.
Hemalatha
,
J.
,
2009
, “
A Review of: ‘Nanofluids: Science and Technology, S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep
,”
Mater. Manuf. Process.
,
24
(
5
), pp.
600
601
.
6.
Bianco
,
V.
,
Manca
,
O.
,
Nardini
,
S.
, and
Vafai
,
K.
,
2015
,
Heat Transfer Enhancement With Nanofluids
,
Taylor & Francis Group
,
Boca Raton, FL
.
7.
Jaluria
,
Y.
,
Manca
,
O.
,
Poulikakos
,
D.
,
Vafai
,
K.
, and
Wang
,
L.
,
2012
, “
Heat Transfer in Nanofluids
,”
Adv. Mech. Eng.
,
2012
, p.
972973
.
8.
Zhang
,
Z. M.
,
2007
,
Nano and Microscale Heat Transfer
,
McGraw-Hill Companies
,
New York
.
9.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2013
,
Nanoparticle Heat Transfer and Fluid Flow: Advanced in Numerical Heat Transfer
,
Taylor & Francis Group
,
Boca Raton, FL
.
10.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
11.
Madhesh
,
D.
, and
Kalaiselvam
,
S.
,
2014
, “
Experimental Analysis of Hybrid Nanofluid as a Coolant
,”
Procedia Eng.
,
97
, pp.
1667
1675
.
12.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Hoseini
,
S. M.
, and
Seifi Jamnani
,
M.
,
2011
, “
Experimental Study of Heat Transfer Enhancement Using Water/Ethylene Glycol Based Nanofluids as a New Coolant for Car Radiators
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1283
1290
.
13.
Hussein
,
A. M.
,
Bakar
,
R. A.
, and
Kadirgama
,
K.
,
2014
, “
Study of Forced Convection Nanofluid Heat Transfer in the Automotive Cooling System
,”
Case Stud. Therm. Eng.
,
2
, pp.
50
61
.
14.
Hatami
,
M.
,
Jafaryar
,
M.
,
Zhou
,
J.
, and
Jing
,
D.
,
2017
, “
Investigation of Engines Radiator Heat Recovery Using Different Shapes of Nanoparticles in H2O/(CH2OH)2based Nanofluids
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
10891
10900
.
15.
Kakavand
,
H.
, and
Molana
,
M.
,
2017
, “
A Numerical Study of Heat Transfer Charcteristics of a Car Radiator Involved Nanofluids
,”
Heat Transf.—Asian Res.
,
47
(
1
), pp.
88
102
.
16.
Khan
,
M. S.
, and
Dil
,
T.
,
2017
, “
Heat Transfer Enhancement of Automobile Radiator Using H2O–CuO Nanofluid
,”
AIP Adv.
,
7
(
4
), pp.
1
9
.
17.
Subhedar
,
D. G.
,
Ramani
,
B. M.
, and
Gupta
,
A.
,
2018
, “
Experimental Investigation of Heat Transfer Potential of Al2O3/Water-Mono Ethylene Glycol Nanofluids as a Car Radiator Coolant
,”
Case Stud. Therm. Eng.
,
11
, pp.
26
34
.
18.
Senthilkumar
,
G.
,
Pavan Kumar
,
P.
, and
Sai Gowtham
,
R.
,
2018
, “
Performance of Radiator by Using SiO2 Nano Fluids
,”
Int. J. Ambient Energy
,
750
, pp.
1
3
.
19.
Harsh
,
R.
,
Srivastav
,
H.
,
Balakrishnan
,
P.
,
Saini
,
V.
,
Senthil Kumar
,
D.
,
Rajni
,
K. S.
, and
Thirumalini
,
S.
,
2018
, “
Study of Heat Transfer Characteristics of Nanofluids in an Automotive Radiator
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
310
(
1
), pp.
1
7
.
20.
Ponangi
,
B. R.
,
Sumanth
,
S.
,
Krishna
,
V.
,
Seetharam
,
T. R.
, and
Seetharamu
,
K. N.
,
2018
, “
Performance Analysis of Automobile Radiator Using Carboxyl Graphene Nanofluids
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
346
, p.
012031
.
21.
Maiga
,
S. E.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
, pp.
530
546
.
22.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
23.
Ganji
,
D. D.
, and
Malvandi
,
A.
,
2016
,
Heat Transfer Enhancement Using Nanofluid Flow in Microchannels—Simulation of Heat and Mass Transfer
,
Matthew Deans
,
Cambridge, MA
.
24.
Lee
,
H.
,
2011
,
Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells
,
Wiley
,
Hoboken, NJ
.
25.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
613
630
.
26.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide
,”
Exp. Heat Transf.
,
11
(
2
), pp.
151
170
.
27.
Ting
,
H. H.
, and
Hou
,
S. S.
,
2015
, “
Investigation of Laminar Convective Heat Transfer for Al2O3-Water Nanofluids Flowing Through a Square Cross-Section Duct With a Constant Heat Flux
,”
Mater. (Basel).
,
8
(
8
), pp.
5321
5335
.
28.
Çengel
,
Y. A.
,
2011
,
Heat and Mass Transfer
,
The McGraw-Hill Companies
,
New York
, p.
673
.
29.
D’Ambrosio
,
D.
, and
Sinigaglia
,
F.
,
2004
,
Cell Migration in Inflammation and Immunity: Methods and Protocols
,
Humana Press
,
Totowa, NJ
.
30.
Al-Gebory
,
L.
,
2016
, “
A Numerical Investigation on the Effect of Scillating Pipe on Nanoparticle Suspensions Behaviour: Thermal and Flow
,”
Int. J. Eng. Res. Manage. Stud.
,
3
(
11
), pp.
1
11
.https://www.ijerms.com/January-2017.html
31.
Agrawal
,
K. N.
, and
Varma
,
H. K.
,
1991
, “
Experimental Study of Heat Transfer Augmentation Versus Pumping Power in a Horizontal R12 Evaporator
,”
Int. J. Refrig.
,
14
(
5
), pp.
273
281
.
32.
Ghmati
,
R. E.
,
Jawad
,
B. A.
, and
Koutsavdis
,
E.
,
2012
, “
An Investigation of CutCell Meshing Strategies for Accurate Aerodynamic Performance Prediction
,”
SAE Int. J. Passeng. Cars - Mech. Syst.
,
5
(
1
), pp.
369
380
.
33.
Ghmati
,
R.
,
Jawad
,
B.
,
Hamieh
,
A.
,
Yee
,
K.
, and
Liu
,
L.
,
2017
, “
Study of Skin Friction Coefficient of Incompressible Flow on High Lift Devices Using Cutcell Mesh
,”
ASME
Paper No. IMECE2017-70778.
You do not currently have access to this content.