This article presents the generalization of the unsteady MHD free convection flow of non-Newtonian sodium alginate-ferrimagnetic nanofluid in two infinite vertical parallel plates. The different shape (blade, brick, cylinder, and platelet) ferrimagnetic nanoparticles are dissolved in the non-Newtonian sodium alginate (SA) as base fluid to form non-Newtonian nanofluids. The Jeffrey fluid model together with energy equation is considered to demonstrate the flow. The Atangana–Baleanu fractional operator is utilized for the generalization of mathematical model. The Laplace transform technique and Zakian's numerical algorithm are used to developed general solutions with a fractional order for the proposed model. The obtained results are computed numerically and presented graphically to understand the physics of pertinent flow parameters. It is noticed that the velocity and temperature profiles are significantly increased with the increasing values of the fractional parameter due to the variation in thermal and momentum boundary layers. In the case of the effect of different shapes of nanoparticles, density is a dominant factor as compared to thermal conductivity, which significantly affects the flow of non-Newtonian nanofluid.

References

References
1.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, Vol.
198
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Progr. Fract. Differ. Appl.
,
1
(
2
), pp.
1
13
.
3.
Atangana
,
A.
,
2018
, “
Non Validity of Index Law in Fractional Calculus: A Fractional Differential Operator With Markovian and non-Markovian Properties
,”
Phys. A: Stat. Mech. Its Appl.
,
505
, pp.
688
706
.
4.
Atangana
,
A.
, and
Baleanu
,
D.
,
2016
, “
New Fractional Derivatives With Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model
,”
Therm. Sci.
,
2
(
20
), pp.
763
769
.
5.
Atangana
,
A.
, and
Gómez-Aguilar
,
J. F.
,
2017
, “
A New Derivative With Normal Distribution Kernel: Theory, Methods and Applications
,”
Phys. A: Stat. Mech. Appl.
,
476
, pp.
1
14
.
6.
Saqib
,
M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2018
, “
Natural Convection Channel Flow of CMC-Based CNTs Nanofluid
,”
Eur. Phys. J. Plus
,
133
(
12
), p.
549
.
7.
Saqib
,
M.
,
Ali
,
F.
,
Khan
,
I.
,
Sheikh
,
N. A.
, and
Jan
,
S. A. A.
,
2018
, “
Entropy Generation in Different Types of Fractionalized Nanofluids
,”
Arabian J. Sci. Eng.
, pp.
1
10
.
8.
Saqib
,
M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2019
, “
Application of Fractional Differential Equations to Heat Transfer in Hybrid Nanofluid: Modeling and Solution Via Integral Transforms
,”
Adv. Differ. Equations
,
2019
(
1
), p.
52
.
9.
Saqib
,
M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2019
, “
New Direction of Atangana–Baleanu Fractional Derivative With Mittag-Leffler Kernel for Non-Newtonian Channel Flow
,”
Fractional Derivatives With Mittag-Leffler Kernel
,
Springer
,
Berlin
, pp.
253
268
.
10.
Saqib
,
M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2019
, “
Generalized Magnetic Blood Flow in a Cylindrical Tube With Magnetite Dusty Particles
,”
J. Magn. Magn. Mater.
,
484
, p.
490
.
11.
Zafar
,
A. A.
, and
Fetecau
,
C.
,
2016
, “
Flow Over an Infinite Plate of a Viscous Fluid With Non-Integer Order Derivative Without Singular Kernel
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2789
2796
.
12.
Makris
,
N.
,
Dargush
,
G. F.
, and
Constantinou
,
M. C.
,
1993
, “
Dynamic Analysis of Generalized Viscoelastic Fluids
,”
J. Eng. Mech.
,
119
(
8
), pp.
1663
1679
.
13.
Alkahtani
,
B. S. T.
, and
Atangana
,
A.
,
2016
, “
Modeling the Potential Energy Field Caused by Mass Density Distribution With Eton Approach
,”
Open Phys.
,
14
(
1
), pp.
106
113
.
14.
Ali
,
F.
,
Sheikh
,
N. A.
,
Khan
,
I.
, and
Saqib
,
M.
,
2017
, “
Magnetic Field Effect on Blood Flow of Casson Fluid in Axisymmetric Cylindrical Tube: A Fractional Model
,”
J. Magn. Magn. Mater.
,
423
, pp.
327
336
.
15.
Khan
,
I.
,
Saqib
,
M.
, and
Ali
,
F.
,
2018
, “
Application of the Modern Trend of Fractional Differentiation to the MHD Flow of a Generalized Casson Fluid in a Microchannel: Modelling and Solution
,”
Eur. Phys. J. Plus
,
133
(
7
), p.
262
.
16.
Vieru
,
D.
,
Fetecau
,
C.
, and
Fetecau
,
C.
,
2015
, “
Time-Fractional Free Convection Flow Near a Vertical Plate With Newtonian Heating and Mass Diffusion
,”
Therm. Sci.
,
19
(
Suppl. 1
), pp.
85
98
.
17.
Morales-Delgado
,
V. F.
,
Gómez-Aguilar
,
J. F.
,
Escobar-Jiménez
,
R. F.
, and
Taneco-Hernández
,
M. A.
,
2018
, “
Fractional Conformable Derivatives of Liouville–Caputo Type With Low-Fractionality
,”
Phys. A: Stat. Mech. Appl.
,
503
, pp.
424
438
.
18.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press, Oxford, UK
.
19.
Das
,
S. K.
,
Choi
,
S. U.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
20.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
Argonne National Lab
,
Lemont, IL
.
21.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
22.
Bruggeman
,
V. D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen—I: Dielektrizitätskonstanten Und Leitfähigkeiten Der Mischkörper Aus Isotropen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
664
.
23.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
24.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech.-B/Fluids
,
28
(
5
), pp.
630
640
.
25.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.
26.
Bourantas
,
G. C.
, and
Loukopoulos
,
V. C.
,
2014
, “
Modeling the Natural Convective Flow of Micropolar Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
35
41
.
27.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
.
28.
Khan
,
A.
,
Khan
,
D.
,
Khan
,
I.
,
Ali
,
F.
,
Karim
,
F. U.
, and
Imran
,
M.
,
2018
, “
MHD Flow of Sodium Alginate-Based Casson Type Nanofluid Passing Through a Porous Medium With Newtonian Heating
,”
Sci. Rep.
,
8
(
1
), p.
8645
.
29.
Shafie
,
S.
,
Gul
,
A.
, and
Khan
,
I.
,
Molybdenum Disulfide Nanoparticles Suspended in Water-Based Nanofluids With Mixed Convection and Flow Inside a Channel Filled With Saturated Porous Medium
,
AIP Publishing
,
Melville, NY
.
30.
Hussanan
,
A.
,
Salleh
,
M. Z.
,
Khan
,
I.
, and
Shafie
,
S.
,
2017
, “
Convection Heat Transfer in Micropolar Nanofluids With Oxide Nanoparticles in Water, Kerosene and Engine Oil
,”
J. Mol. Liq.
,
229
, pp.
482
488
.
31.
Khalid
,
A.
,
Khan
,
I.
, and
Shafie
,
S.
,
2016
, “
Heat Transfer in Ferrofluid With Cylindrical Shape Nanoparticles Past a Vertical Plate With Ramped Wall Temperature Embedded in a Porous Medium
,”
J. Mol. Liq.
,
221
, pp.
1175
1183
.
32.
Zin
,
N. A. M.
,
Khan
,
I.
, and
Shafie
,
S.
,
Thermal Radiation in Unsteady MHD Free Convection Flow of Jeffrey Fluid With Ramped Wall Temperature
,
AIP Publishing
,
Melville, NY
.
33.
Zin
,
N. A. M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2016
, “
The Impact Silver Nanoparticles on MHD Free Convection Flow of Jeffrey Fluid Over an Oscillating Vertical Plate Embedded in a Porous Medium
,”
J. Mol. Liq.
,
222
, pp.
138
150
.
34.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), p.
014304
.
35.
Saqib
,
M.
,
Ali
,
F.
,
Khan
,
I.
,
Sheikh
,
N. A.
, and
Jan
,
S. A. A.
,
2017
, “
Exact Solutions for Free Convection Flow of Generalized Jeffrey Fluid: A Caputo-Fabrizio Fractional Model
,”
Alexandria Eng. J.
,
57
(
3
), pp.
1849
1858
.
36.
Zakian
,
V.
, and
Littlewood
,
R. K.
,
1973
, “
Numerical Inversion of Laplace Transforms by Weighted Least-Squares Approximation
,”
Comput. J.
,
16
(
1
), pp.
66
68
.
37.
Halsted
,
D. J.
, and
Brown
,
D. E.
,
1972
, “
Zakian's Technique for Inverting Laplace Transforms
,”
Chem. Eng. J.
,
3
, pp.
312
313
.
38.
Azhar
,
W. A.
,
Vieru
,
D.
, and
Fetecau
,
C.
,
2017
, “
Free Convection Flow of Some Fractional Nanofluids Over a Moving Vertical Plate With Uniform Heat Flux and Heat Source
,”
Phys. Fluids
,
29
(
8
), p.
082001
.
39.
Zin
,
N. A. M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2017
, “
Exact and Numerical Solutions for Unsteady Heat and Mass Transfer Problem of Jeffrey Fluid With MHD and Newtonian Heating Effects
,”
Neural Comput. Appl.
,
30
(
11
), pp.
1
17
.
You do not currently have access to this content.