Different-radius of curvature pipes are experimentally investigated using distilled water and Fe3O4–water nanofluid with two different values of the nanoparticle volume fraction as the working fluids. The mass flow rate is approximately varied from 0.2 to 0.7 kg/min (in the range of laminar flow); the wall heat flux is nearly kept constant. The experimental results reveal that utilizing the nanofluid increases the convection heat transfer coefficient and Nusselt number in comparison to water; these outcomes are also observed when the radius of curvature is decreased and/or the mass flow rate is increased (equivalently, a rise in Dean number). The resultant pressure gradient is, however, intensified by an increase in the volume concentration of nanoparticles and/or by a rise in Dean number. For any particular working fluid, there is an optimum mass flow rate, which maximizes the system efficiency. The overall efficiency can be introduced to include hydrodynamic as well as thermal characteristics of nanofluids in various geometrical conditions. For each radius of curvature, the same overall efficiency may be achieved for two magnitudes of nanofluid volume concentration.

References

References
1.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
.
2.
O′Hanley
,
H. F.
,
Buongiorno
,
J.
,
Hu
,
L. W.
,
McKrell
,
T. J.
, and
Hu
,
L. W.
,
2011
, “
Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles
,” ASME Paper No. IMECE2011-62054.
3.
Hwang
,
Y.
,
Park
,
H. S.
,
Lee
,
J. K.
, and
Jung
,
W. H.
,
2006
, “
Thermal Conductivity and Lubrication Characteristics of Nanofluids
,”
Curr. Appl. Phys.
,
6
, pp.
67
71
.
4.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Roy
,
G.
,
Galanis
,
N.
,
Mare
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2007
, “
Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1492
1506
.
5.
Karimipour
,
A.
,
Bagherzadeh
,
A.
,
Goodarzi
,
M.
,
Alnaqi
,
A. A.
,
Bahiraei
,
M.
,
Safaei
,
M. R.
, and
Shadloo
,
M. S.
,
2018
, “
Synthesized CuFe2O4/SiO2 Nanocomposites Added to Water/EG: Evaluation of the Thermophysical Properties Beside Sensitivity Analysis & EANN
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1169
1179
.
6.
Khodabandeh
,
E.
,
Safaei
,
M. R.
,
Akbari
,
S.
,
Akbari
,
O. A.
, and
Alrashed
,
A. A. A. A.
,
2018
, “
Application of Nanofluid to Improve the Thermal Performance of Horizontal Spiral Coil Utilized in Solar Ponds: Geometric Study
,”
Renewable Energy
,
122
, pp.
1
16
.
7.
Ghadiri
,
M.
,
Sardarabadi
,
M.
,
Pasandideh-fard
,
M.
, and
Moghadam
,
A. J.
,
2015
, “
Experimental Investigation of a PVT System Performance Using Nano Ferrofluids
,”
Energy Convers. Manage.
,
103
, pp.
468
476
.
8.
Moghadam
,
A. J.
,
Farzane-Gord
,
M.
,
Sajadi
,
M.
, and
Hoseyn-Zadeh
,
M.
,
2014
, “
Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
9
14
.
9.
Zhou
,
D. W.
,
2004
, “
Heat Transfer Enhancement of Copper Nanofluid With Acoustic Cavitation
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3109
3117
.
10.
Zhang
,
L.
,
Lv
,
J.
,
Bai
,
M.
, and
Guo
,
D.
,
2015
, “
Effect of Vibration on Forced Convection Heat Transfer for SiO2–Water Nanofluids
,”
Heat Transfer Eng.
,
36
, pp.
452
461
.
11.
Hosseinian
,
A.
,
Meghdadi-Isfahani
,
A. H.
, and
Shirani
,
E.
,
2018
, “
Experimental Investigation of Surface Vibration Effects on Increasing the Stability and Heat Transfer Coefficient of MWCNTs-Water Nanofluid in a Flexible Double Pipe Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
275
285
.
12.
Goharkhah
,
M.
,
Salarian
,
A.
,
Ashjaee
,
M.
, and
Shahabadi
,
M.
,
2015
, “
Convective Heat Transfer Characteristics of Magnetite Nanofluid Under the Influence of Constant and Alternating Magnetic Field
,”
Powder Technol.
,
274
, pp.
258
267
.
13.
Goharkhah
,
M.
,
Ashjaee
,
M.
, and
Shahabadi
,
M.
,
2016
, “
Experimental Investigation on Convective Heat Transfer and Hydrodynamic Characteristics of Magnetite Nanofluid Under the Influence of an Alternating Magnetic Field
,”
Int. J. Therm. Sci.
,
99
, pp.
113
124
.
14.
Dalvand
,
H. M.
, and
Moghadam
,
A. J.
,
2019
, “
Experimental Investigation of a Water/Nanofluid Jacket Performance in Stack Heat Recovery
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
657
669
.
15.
Chamkha
,
A. J.
,
2000
, “
Unsteady Laminar Hydromagnetic Fluid-Particle Flow and Heat Transfer in Channels and Circular Pipes
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
740
746
.
16.
Umavathi
,
J. C.
,
Kumar
,
J. P.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2005
, “
Mixed Convection in a Vertical Porous Channel
,”
Transp. Porous Med.
,
61
(
3
), pp.
315
335
.
17.
Ismael
,
M. A.
,
Pop
,
I.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection in a Lid-Driven Square Cavity With Partial Slip
,”
Int. J. Therm. Sci.
,
82
, pp.
47
61
.
18.
Chamkha
,
A. J.
,
Grosan
,
T.
, and
Pop
,
I.
,
2003
, “
Fully Developed Mixed Convection of a Micropolar Fluid in a Vertical Channel
,”
Int. J. Fluid Mech. Res.
,
30
(
3
), pp.
251
263
.
19.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
A.
,
2005
, “
Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transfer
,
42
(
2
), pp.
81
90
.
20.
Kumar
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2010
, “
Fully-Developed Free-Convective Flow of Micropolar and Viscous Fluids in a Vertical Channel
,”
Appl. Math. Model.
,
34
(
5
), pp.
1175
1186
.
21.
Mousavi
,
S. V.
,
Sheikholeslami
,
M.
,
Gorji
,
B. M.
, and
Barzegar-Gerdroodbary
,
M.
,
2016
, “
The Influence of Magnetic Field on Heat Transfer of Magnetic Nanofluid in a Sinusoidal Double Pipe Heat Exchanger
,”
Chem. Eng. Res. Des.
,
113
, pp.
112
124
.
22.
Khoshvaght-Aliabadi
,
M.
,
Khoshvaght
,
M.
, and
Rahnama
,
P.
,
2016
, “
Thermal-Hydraulic Characteristics of Plate-Fin Heat Exchangers With Corrugated/Vortex-Generator Plate-Fin (CVGPF)
,”
Appl. Therm. Eng.
,
98
, pp.
690
701
.
23.
Ebrahimi-Moghadam
,
A.
, and
Moghadam
,
A. J.
,
2019
, “
Optimal Design of Geometrical Parameters and Flow Characteristics for Al2O3/Water Nanofluid Inside Corrugated Heat Exchangers by Using Entropy Generation Minimization and Genetic Algorithm Methods
,”
Appl. Therm. Eng.
,
149
, pp.
889
898
.
24.
Mahmoudi
,
M.
,
Tavakoli
,
M. R.
,
Mirsoleimani
,
M. A.
,
Gholami
,
A.
, and
Salimpour
,
M. R.
,
2017
, “
Experimental and Numerical Investigation on Forced Convection Heat Transfer and Pressure Drop in Helically Coiled Pipes Using TiO2/Water Nanofluid
,”
Int. J. Refrig.
,
74
, pp.
627
643
.
25.
Bahremand
,
H.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2015
, “
Experimental and Numerical Investigation of Turbulent Nanofluid Flow in Helically Coiled Tubes Under Constant Wall Heat Flux Using Eulerian–Lagrangian Approach
,”
Powder Technol.
,
269
, pp.
93
100
.
26.
Kahani
,
M.
,
Zeinali-Heris
,
S.
, and
Mousavi
,
S. M.
,
2013
, “
Comparative Study Between Metal Oxide Nanopowders on Thermal Characteristics of Nanofluid Flow Through Helical Coils
,”
Powder Technol.
,
246
, pp.
82
92
.
27.
Salimpour
,
M. R.
,
2009
, “
Heat Transfer Coefficients of Shell and Coiled Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
203
207
.
28.
Akbaridoust
,
F.
,
Rakhsha
,
M.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2013
, “
Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Temperature Using Dispersion Model
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
480
491
.
29.
Jamshidi
,
N.
,
Farhadi
,
M.
,
Ganji
,
D. D.
, and
Sedighi
,
K.
,
2013
, “
Experimental Analysis of Heat Transfer Enhancement in Shell and Helical Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
644
652
.
30.
Kordi
,
M.
,
Moghadam
,
A. J.
, and
Afshari
,
E.
,
2019
, “
Effects of Cooling Passages and Nanofluid Coolant on Thermal Performance of Polymer Electrolyte Membrane Fuel Cells
,”
ASME J. Electrochem. En. Conv. Stor.
,
16
(
3
), p.
031001
.
31.
Rea
,
U.
,
McKrell
,
T.
,
Hu
,
L. W.
, and
Buongiorno
,
J.
,
2009
, “
Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2042
2048
.
32.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
33.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
34.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
35.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.