The mixed convective heat transfer of a micropolar nanofluid in a square lid-driven cavity has been numerically studied. The lid is thermally insulated, the side walls are kept cold, and the bottom wall is kept hot with sinusoidally thermal boundary condition. The governing equations were solved by finite volume method using the SIMPLE algorithm. The effect of Grashof number (102–105), the volume fraction of nanoparticles (0.0–0.1), and micropolarity (0.0–2.0) has been investigated on the heat transfer of Al2O3–water nanofluid. Also, the variable model was used to calculate fluid viscosity and thermal conductivity coefficient of the nanofluid. The results showed that an increase in Grashof amplifies the buoyancy force and enhances the Nusselt number. Also, an increase in vortex viscosity at low Grashof numbers strengthens the forced convection and increases the Nusselt number over the bottom wall. However, at Gr = 105, the increase in vortex viscosity up to K = 1.0 leads to a decrease in the amount of heat transfer, but its further increase entails the increase in heat transfer. Although the addition of nanoparticles to the fluid improves heat transfer rate, the extent of improvement at nonzero K values is lower than that in the Newtonian fluid. The comparison of the average Nusselt number computed on the hot wall under two different states of temperature-depended thermo-physical properties and constant thermo-physical properties reveals that their difference is more significant for the Newtonian fluid especially at higher volume fraction.

References

References
1.
Eringen
,
A. C.
,
1966
, “
Theory of Microfluids
,”
J. Appl. Math. Mech.
,
16
, pp.
1
18
.
2.
Eringen
,
A. C.
,
1964
, “
Simple Microfluids
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
205
217
.
3.
Bourantas
,
G. C.
, and
Loukopoulos
,
V. C.
,
2014
, “
Modeling the Natural Convective Flow of Micropolar Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
35
41
.
4.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.
5.
Cha
,
C. K.
, and
Jaluria
,
Y.
,
1984
, “
Recirculating Mixed Convection Flow for Energy Extraction
,”
Heat Mass Transfer
,
27
(
10
), pp.
1801
1810
.
6.
Berger
,
I.
, and
Hamblin
,
P. F.
,
1982
, “
Dynamics of Lakes, Reservoirs and Cooling Ponds
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
153
187
.
7.
Ideriah
,
F. J. K.
,
1980
, “
Prediction of Turbulent Cavity Flow Driven by Buoyancy and Shear
,”
Mech. Eng. Sci.
,
22
(
6
), pp.
287
295
.
8.
Pilkington
,
L. A. B.
,
1969
, “
Review Lecture: The Float Glass Process
,”
Proc. R. Soc. London, Ser. A
,
314
(
1516
), pp.
1
25
.
9.
Moallemi
,
M. K.
, and
Jang
,
K. S.
,
1992
, “
Prandtl Number Effects on Laminar Mixed Convection Heat Transfer in a Lid-Driven Cavity
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1881
1892
.
10.
Aydm
,
O.
,
1999
, “
Aiding and Opposing Mechanisms of Mixed Convection in a Shear- and Buoyancy-Driven Cavity
,”
Int. Commun. Heat Mass Transfer
,
26
(
7
), pp.
1019
1028
.
11.
Oztop
,
H. F.
, and
Dagtekin
,
I.
,
2004
, “
Mixed Convection in Two-Sided Lid-Driven Differentially Heated Square Cavity
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1761
1769
.
12.
Waheed
,
M. A.
,
2009
, “
Mixed Convective Heat Transfer in Rectangular Enclosures Driven by a Continuously Moving Horizontal Plate
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5055
5063
.
13.
Karimipour
,
A.
,
Nezhad
,
A. H.
,
D'Orazio
,
A.
, and
Shirani
,
E.
,
2013
, “
The Effects of Inclination Angle and Prandtl Number on the Mixed Convection in the Inclined Lid Driven Cavity Using Lattice Boltzmann Method
,”
J. Theor. Appl. Mech.
,
51
(
2
), pp.
447
462
.www.ptmts.org.pl/jtam/index.php/jtam/article/view/v51n2p447
14.
Burgos
,
J.
,
Cuesta
,
I.
, and
Salueña
,
C.
,
2016
, “
Numerical Study of Laminar Mixed Convection in a Square Open Cavity
,”
Int. J. Heat Mass Transfer
,
99
, pp.
599
612
.
15.
Basak
,
T.
,
Roy
,
S.
,
Sharma
,
P. K.
, and
Pop
,
I.
,
2009
, “
Analysis of Mixed Convection Flows Within a Square Cavity With Uniform and Non-Uniform Heating of Bottom Wall
,”
Int. J. Therm. Sci.
,
48
(
5
), pp.
891
912
.
16.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
17.
Ben-Cheikh
,
N.
,
Chamkha
,
A.
,
Ben-Beya
,
B.
, and
Lili
,
T.
,
2013
, “
Natural Convection of Water-Based Nanofluids in a Square Enclosure With Non-Uniform Heating of the Bottom Wall
,”
J. Mod. Phys.
,
4
(
2
), pp.
147
159
.
18.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2012
, “
Combined Convection Flow in Triangular Wavy Chamber Filled With Water–CuO Nanofluid: Effect of Viscosity Models
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1226
1236
.
19.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2013
, “
Modeling of Mixed Convective Heat Transfer Utilizing Nanofluid in a Double Lid-Driven Chamber With Internal Heat Generation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
1
), pp.
36
57
.
20.
Basak
,
T.
, and
Chamkha
,
A. J.
,
2012
, “
Heatline Analysis on Natural Convection for Nanofluids Confined Within Square Cavities With Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5526
5543
.
21.
Chamkha
,
A. J.
, and
Abu-Nada
,
E.
,
2012
, “
Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled With Water–Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech. B/Fluids
,
36
, pp.
82
96
.
22.
Arefmanesh
,
A.
,
Aghaei
,
A.
, and
Ehteram
,
H.
,
2016
, “
Mixed Convection Heat Transfer in a CuO–Water Filled Trapezoidal Enclosure, Effects of Various Constant and Variable Properties of the Nanofluid
,”
Appl. Math. Modell.
,
40
(
2
), pp.
815
831
.
23.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H. F.
, and
Campo
,
A.
,
2010
, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
479
491
.
24.
Maxwell
,
J. C.
,
1973
,
A Treatise on Electricity and Magnetism
,
Clarendon
,
Oxford, UK
.
25.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.
26.
Sheikhzadeh
,
G. A.
,
Khorasanizadeh
,
H.
, and
Ghaffari
,
S. P.
,
2013
, “
Mixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure
,”
Transp. Phenom. Nano Micro Scales
,
1
(
2
), pp.
75
92
.
27.
Bhargava
,
R.
,
Agarwal
,
R.
,
Kumar
,
L.
, and
Takhar
,
H. S.
,
2004
, “
Finite Element Study of Mixed Convection Micropolar Flow in a Vertical Circular Pipe With Variable Surface Conditions
,”
Int. J. Eng. Sci.
,
42
(
1
), pp.
13
27
.
28.
Ikbal
,
M. A.
,
Chakravarty
,
S.
, and
Mandal
,
P. K.
,
2009
, “
Two-Layered Micropolar Fluid Flow Through Stenosed Artery: Effect of Peripheral Layer Thickness
,”
Comput. Math. Appl.
,
58
(
7
), pp.
1328
1339
.
29.
Aydin
,
O.
, and
Pop
,
I.
,
2005
, “
Natural Convection From a Discrete Heater in Enclosures Filled With a Micropolar Fluid
,”
Int. J. Eng. Sci.
,
43
(
19–20
), pp.
1409
1418
.
30.
Aydın
,
O.
, and
Pop
,
I.
,
2007
, “
Natural Convection in a Differentially Heated Enclosure Filled With a Micropolar Fluid
,”
Int. J. Therm. Sci.
,
46
(
10
), pp.
963
969
.
31.
Hsu
,
T. H.
, and
Wang
,
S. G.
,
2000
, “
Mixed Convection of Micropolar Fuids in a Cavity
,”
Int. J. Heat Mass Transfer
,
43
(
9
), pp.
1563
1572
.
32.
Saleem
,
M.
,
Asghar
,
S.
, and
Hossain
,
M. A.
,
2011
, “
Natural Convection Flow of Micropolar Fluid in a Rectangular Cavity Heated From Below With Cold Sidewalls
,”
Math. Comput. Modell.
,
54
(
1–2
), pp.
508
518
.
33.
Ahmed
,
S. E.
,
Mansour
,
M. A.
,
Hussein
,
A. K.
, and
Sivasankaran
,
S.
,
2016
, “
Mixed Convection From a Discrete Heat Source in Enclosures With Two Adjacent Moving Walls and Filled With Micropolar Nanofluids
,”
Int. J. Eng. Sci. Technol.
,
19
(
1
), pp.
364
376
.
34.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publication
,
Washington, DC
.
35.
Zadravec
,
M.
,
Hribersek
,
M.
, and
Skerget
,
L.
,
2009
, “
Natural Convection of Micropolar Fluid in an Enclosure With Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
33
(
4
), pp.
485
492
.
36.
Khanafer
,
K. M.
,
Al-Amiri
,
A. M.
, and
Pop
,
I.
,
2007
, “
Numerical Simulation of Unsteady Mixed Convection in a Driven Cavity Using an Externally Excited Sliding Lid
,”
Eur. J. Mech. B/Fluids
,
26
(
5
), pp.
669
687
.
37.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2010
, “
Mixed Convection Flow in a Lid-Driven Inclined Square Enclosure Filled With a Nanofluid
,”
Eur. J. Mech. B/Fluids
,
29
(
6
), pp.
472
482
.
You do not currently have access to this content.