Two-phase closed thermosyphon (TPCT) is a cost-effective heat transfer device with high thermal efficiency owing to extensive interphase heat and mass transfer. Thus, TPCT has found many industrial applications. Proper selection of the working fluid could further improve efficiency of TPCT, and nanofluids with superior thermal properties are suitable choices. Numerical simulation of boiling and condensation, natural circulation, and hybrid nanofluid modeling in a closed space is a notable challenge and current study is devoted to this subject. In this study, a novel methodology for incorporating the effects of compressibility and thermal expansion into all thermophysical properties of both phases is developed and programmed into a validated computational fluid dynamics (CFD) code. Distilled water, a regular nanofluid, Al2O3/water, and a hybrid nanofluid, TiSiO4/water are selected as the working fluids. Experimental data for wall thermal profile are employed to validate the numerical simulation. Then, overall thermal resistance is evaluated in terms of nanoparticles concentration and input power variations. Results indicate that the numerical methodology developed in this study could evaluate the optimum state of TPCT in an efficient and accurate manner and the optimum state for regular and hybrid nanofluid demonstrates 48% and 54% improvement over distilled water, respectively. Furthermore, a subtle relation between the thermal resistance and the height to which fluid column rises in TPCT has been discerned and quantified, which is used as a supplement to the conventional qualitative method of reasoning to justify the somewhat controversial behaviors of nanofluid application in TPCT.

References

1.
Peterson
,
G. P.
,
1994
,
An Introduction Heat Pipes Modeling, Testing and Applications
,
Wiley
,
New York
, pp.
1
368
.
2.
Zohuri
,
B.
,
2016
,
Heat Pipe Design and Technology
, 2nd ed.,
Springer
,
Cham, Switzerland
, pp.
431
449
.
3.
Reay
,
D. A.
,
Kew
,
P. A.
, and
McGlen
,
R. J.
,
2014
,
Heat Pipes
, 6th ed.,
Butterwoth-Heinemann
,
Oxford, UK
, pp.
65
94
; 135–173.
4.
Mostafa
,
A.
,
El-Baky
,
A.
,
Mousa
,
M.
, and
Mohamed
,
M.
,
2007
, “
Heat Pipe Heat Exchanger for Heat Recovery in Air Conditioning
,”
Appl. Therm. Eng.
,
27
(4), pp.
795
801
.
5.
Azad
,
E.
,
2008
, “
Theoretical and Experimental Investigation of Heat Pipe Solar Collector
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1666
1672
.
6.
Vasiliev
,
L. L.
,
2008
, “
Micro and Miniature Heat Pipes-Electronic Component Coolers
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
266
273
.
7.
Riehl
,
R. R.
, and
Dutra
,
T.
,
2005
, “
Development of an Experimental Loop Heat Pipe for Application in Future Space Missions
,”
Appl. Therm. Eng.
,
25
(
1
), pp.
101
112
.
8.
Kafeel
,
K.
, and
Turan
,
A.
,
2013
, “
Axi-Symmetric Simulation of a Two Phase Vertical Thermosyphon Using Eulerian Two-Fluid Methodology
,”
Heat Mass Transfer
,
49
(
8
), pp.
1089
1099
.
9.
Bellos
,
E.
, and
Tzivanidis
,
C. J.
,
2018
, “
A Review of Concentrating Solar Thermal Collectors With and Without Nanofluids
,”
Therm. Anal. Calorim.
,
135
(
1
), pp.
763
786
.
10.
Eastman
,
J. A.
,
Choi
,
S. U.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
,
2001
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
718
720
.
11.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer/Waerme- Stoffuebertrag.
,
39
(
8–9
), pp.
775
784
.
12.
Tsai
,
C. Y.
,
Chien
,
H. T.
,
Ding
,
P. P.
,
Chan
,
B.
,
Luh
,
T. Y.
, and
Chen
,
P. H.
,
2004
, “
Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance
,”
Mater. Lett.
,
58
(
9
), pp.
1461
1465
.
13.
Noie
,
S. H.
,
Heris
,
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
700
705
.
14.
Venkatachalapathy
,
S.
,
Kumaresan
,
G.
, and
Suresh
,
S.
,
2015
, “
Performance Analysis of Cylindrical Heat Pipe Using Nanofluids-an Experimental Study
,”
Int. J. Multiphase Flow
,
72
, pp.
188
197
.
15.
Salehi
,
H.
,
Heris
,
S. Z.
, and
Noie
,
S. H.
,
2011
, “
Experimental Study of a Two-Phase Closed Thermosyphon With Nanofluid and Magnetic Field Effect
,”
J. Enhanced Heat Transfer
,
18
(
3
), pp.
261
269
.
16.
Kamyar
,
A.
,
Ong
,
K. S.
, and
Saidur
,
R.
,
2013
, “
Effects of Nanofluids on Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Mass Transfer
,
65
, pp.
610
618
.
17.
Han
,
W. S.
, and
Rhi
,
S. H.
,
2011
, “
Thermal Characteristics of Grooved Heat Pipe With Hybrid Nanofluids
,”
Therm. Sci.
,
15
(
1
), pp.
195
206
.
18.
Liu
,
Z. H.
,
Li
,
Y. Y.
, and
Bao
,
R.
,
2011
, “
Compositive Effect of Nanoparticle Parameter on Thermal Performance of Cylindrical Micro-Grooved Heat Pipe Using Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
558
568
.
19.
Poplaski
,
L. M.
,
Benn
,
S. P.
, and
Faghri
,
A.
,
2017
, “
Thermal Performance of Heat Pipes Using Nanofluids
,”
Int. J. Heat Mass Transfer
,
107
, pp.
358
371
.
20.
Solomon
,
A. B.
,
Ramachandran
,
K.
,
Asirvatham
,
L. G.
, and
Pillai
,
B. C.
,
2014
, “
Numerical Analysis of a Screen Mesh Wick Heat Pipe With Cu/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
75
, pp.
523
533
.
21.
Asmaie
,
L.
,
Haghshenasfard
,
M.
,
Zeinabad
,
A. M.
, and
Esfahany
,
M. N.
,
2013
, “
Thermal Performance Analysis of Nanofluids in a Thermosyphon Heat Pipe Using CFD Modeling
,”
Heat Mass Transfer
,
49
(
5
), pp.
667
678
.
22.
ANSYS,
2016
,
ANSYS Fluent Theory Guide
,
ANSYS
,
Canonsburg, PA
.
23.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
122
131
.
24.
Kim
,
Y.
,
Choi
,
J.
,
Kim
,
S.
, and
Zhang
,
Y.
,
2015
, “
Effects of Mass Transfer Time Relaxation Parameters on Condensation in a Thermosyphon
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5497
5505
.
25.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2015
, “
CFD Modelling of a Two-Phase Closed Thermosyphon Charged With R134a and R404a
,”
Appl. Therm. Eng.
,
78
, pp.
482
490
.
26.
Vadi
,
R.
, and
Sepanloo
,
K.
,
2016
, “
Investigation of a LOCA in a Typical MTR by a Novel Best-Estimate Code
,”
Prog. Nucl. Energy
,
86
, pp.
141
161
.
27.
Vadi
,
R.
, and
Sepanloo
,
K.
,
2016
, “
An Improved Porous Media Model for Nuclear Reactor Analysis
,”
Nucl. Sci. Tech.
,
27
(
1
), pp.
1
24
.
28.
Vadi
,
R.
, and
Sepanloo
,
K.
,
2016
, “
Reassessment of the Generic Assumptions Applied to the Conventional Analysis of the Reactivity Insertion Accident in the MTRs Using a Novel Coupled Code
,”
Prog. Nucl. Energy
,
93
, pp.
96
115
.
29.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
30.
Ferzieger
,
J. L.
, and
Peric
,
M.
,
1996
,
Computational Methods for Fluid Dynamics
,
Springer
,
Cham, Switzerland
, pp.
149
211
.
31.
Zuber
,
N.
, and
Findlay
,
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow System
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
453
468
.
32.
Leveque
,
R. J.
,
2004
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge, UK
, pp.
1
558
.
33.
Lafaurie
,
B.
,
Nardone
,
C.
,
Scardovelli
,
R.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1994
, “
Modelling Merging and Fragmentation in Multiphase Flows With SURFER
,”
J. Comput. Phys.
,
113
(
1
), pp.
134
147
.
34.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
35.
Lee
,
W. H.
,
1979
, “
A Pressure Iteration Scheme for Two-Phase Modeling
,” Los Alamos Scientific Laboratory, Los Alamos, NM, Report No. LA-UR 79-975.
36.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Academic Press
,
New York
, pp.
273
285
.
37.
Leonard
,
B. P.
,
1991
, “
The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection
,”
Comp. Methods Appl. Mech. Eng.
,
88
(
1
), pp.
17
74
.
38.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in C
, 2nd ed.,
Cambridge University Press
,
New York
, pp.
173
214
.
39.
Patankar
,
S. V.
,
1980
, “Numerical Heat Transfer and Fluid Flow,”
Hemisphere
,
Washington, DC
, pp.
179
201
.
40.
Issa
,
R. I.
,
1986
, “
Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
41.
Knudsen
,
M.
,
1934
,
The Kinetic Theory of Gases: Some Modern Aspects
,
Methuen
,
North Yorkshire, UK
, pp.
78
134
.
42.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
43.
Satti
,
J. R.
,
2015
, “
Studies on Thermophysical Properties of Nanofluids and Their Application in Ground Source Heat Pump
,” Ph.D. thesis, University of Alaska Fairbanks, Fairbanks, AK.
44.
Satti
,
J. R.
,
Das
,
D. K.
, and
Ray
,
D.
,
2016
, “
Measurements of Densities of Propylene Glycol Based Nanofluids and Comparison With Theory
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021021
.
45.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
46.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.
47.
Arani
,
A. A.
, and
Amani
,
J.
,
2012
, “
Experimental Study on the Effect of TiO2-Water Nanofluid on Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
107
115
.
48.
Incropera
,
F.
, and
Dewitt
,
D.
,
2006
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
, pp.
117
301
.
You do not currently have access to this content.