The main objective of the present study is to carry out experimental investigation on thermal performance of the nanofluid-based rectangular natural circulation loop (NCL). For this study, an experimental test rig is fabricated with heater as heat source, and tube in tube heat exchanger as heat sink. For the experimentation, three different nanofluids are used as working fluids. The nanometer-sized particles of silicon dioxide (SiO2), copper oxide (CuO), and alumina (Al2O3) are dispersed in distilled water to produce the nanofluids at different volume concentrations ranging from 0.5% to 1.5%. Experiments are carried out at different power inputs and different cold fluid inlet temperatures. The results indicate that NCL operating with nanofluid reaches steady-state condition quickly, when compared to water due to its increased thermal conductivity. The steady-state reaching time is reduced by 12–27% by using different nanofluids as working fluids in the loop when compared to water. The thermal performance parameters like mass flow rate, Rayleigh number, and average Nusselt number of the nanofluid-based NCL are improved by 10.95%, 16.64%, and 8.10%, respectively, when compared with water-based NCL. At a given power input, CuO–water nanofluid possess higher mass flow rate, Rayleigh number and Nusselt number than SiO2–water and Al2O3–water nanofluids due to better thermo-rheological properties.

References

1.
Close
,
D. J.
,
1962
, “
The Performance of Solar Water Heaters With Natural Circulation
,”
Sol. Energy
,
6
(
1
), pp.
33
40
.
2.
Kreitlow
,
D. B.
,
Reistad
,
G. M.
,
Miles
,
C. R.
, and
Culver
,
G. G.
,
1978
, “
Thermosyphon Models for Down Hole Heat Exchanger Application in Shallow Geothermal Systems
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
713
719
.
3.
Nayak
,
A. K.
,
Vijayan
,
P. K.
,
Saha
,
D.
,
Venkat Raj
,
V.
, and
Aritomi
,
M.
,
2000
, “
Analytical Study of Nuclear-Coupled Density-Wave Instability in a Natural Circulation Pressure Tube Type Boiling Water Reactor
,”
Nucl. Eng. Des.
,
195
(
1
), pp.
27
44
.
4.
Lee
,
J. S.
,
Rhi
,
S. H.
,
Kim
,
C. N.
, and
Lee
,
Y.
,
2003
, “
Use of Two-Phase Thermosyphons for Thermoelectric Refrigeration: Experiment and Analysis
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1167
1176
.
5.
Vladimir
,
P. G.
, and
Maydanik
,
Y. F.
,
2007
, “
Low-Noise Cooling System for PC on the Base of Loop Heat Pipes
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
894
901
.
6.
Zvirin
,
Y.
,
1982
, “
A Review of Natural Circulation Loops in Pressurized Water Reactors and Other Systems
,”
Nucl. Eng. Des.
,
67
(
2
), pp.
203
225
.
7.
Vijayan
,
P. K.
,
2002
, “
Experimental Observations on the General Trends of the Steady State and Stability Behavior of Single Phase Natural Circulation Loops
,”
Nucl. Eng. Des.
,
215
(
1–2
), pp.
139
152
.
8.
Misale
,
M.
,
Garibaldi
,
P.
,
Passos
,
J. C.
, and
de Bitencourt
,
G. G.
,
2007
, “
Experiments in a Single Phase Natural Circulation Mini-Loop
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
1111
1120
.
9.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2008
, “
An Experimental Investigation of Single-Phase Natural Circulation Behavior in a Rectangular Loop With Al2O3 Nanofluids
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
184
189
.
10.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2009
, “
Thermal–Hydraulic Characteristics of a Single Phase NCL With Water and Al2O3 Nanofluids
,”
Nucl. Eng. Des.
,
239
(
3
), pp.
526
540
.
11.
Nayak
,
A. K.
,
Gartia
,
M. R.
, and
Vijayan
,
P. K.
,
2009
, “
Nanofluids: A Novel Promising Flow Stabilizer in Natural Circulation Systems
,”
AIChE J.
,
55
(
1
), pp.
268
274
.
12.
Kumar
,
R. G.
,
2009
, “
Steady State Analysis of CO2 Based Natural Circulation Loops With End Heat Exchangers
,”
Appl. Therm. Eng.
,
29
, pp.
1893
1903
.
13.
Yadav
,
A. K.
,
Ram Gopal
,
M.
, and
Bhattacharyya
,
S.
,
2012
, “
CO2 Based Natural Circulation Loops: New Correlations for Friction and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4621
4630
.
14.
Bejjam
,
R. B.
, and
Kiran Kumar
,
K.
,
2018
, “
Numerical Study on Heat Transfer Characteristics of Nanofluid Based Natural Circulation Loop
,”
Therm. Sci. J.
,
22
(
2
), pp.
885
897
.
15.
Bejjam
,
R. B.
, and
Kiran Kumar
,
K.
,
2018
, “
Numerical Investigation to Study the Effect of Loop Inclination Angle on Thermal Performance of Nanofluid Based Natural Circulation Loop
,”
Int. J. Ambient Energy
(accepted).
16.
Misale
,
M.
,
Devia
,
F.
, and
Garibaldi
,
P.
,
2012
, “
Experiments With Al2O3 Nanofluid in a Single Phase Natural Circulation Mini-Loop: Preliminary Results
,”
Appl. Therm. Eng.
,
40
, pp.
64
70
.
17.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2012
, “
A Review and Analysis on Influence of Temperature and Concentration of Nanofluids on Thermophysical Properties, Heat Transfer and Pumping Power
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4063
4078
.
18.
Ho
,
C. J.
,
Chung
,
Y. N.
, and
Lai
,
C.-M.
,
2014
, “
Thermal Performance of Al2O3/Water Nanofluid in a Natural Circulation Loop With a Mini-Channel Heat Sink and Heat Source
,”
Energy Convers. Manage.
,
87
, pp.
848
858
.
19.
Doganay
,
S.
, and
Turgut
,
A.
,
2015
, “
Enhanced Effectiveness of Nanofluid Based Natural Circulation Mini Loop
,”
Appl. Therm. Eng.
,
75
, pp.
669
676
.
20.
Koca
,
H. D.
,
Doganay
,
S.
, and
Turgut
,
A.
,
2017
, “
Thermal Characteristics and Performance of Ag-Water Nanofluid: Application to Natural Circulation Loops
,”
Energy Convers. Manage.
,
135
, pp.
9
20
.
21.
Goudarzi
,
N.
, and
Talebi
,
S.
,
2018
, “
Heat Removal Ability for Different Orientations of Single-Phase Natural Circulation Loops Using the Entransy Method
,”
Ann. Nucl. Energy
,
111
, pp.
509
522
.
22.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
.
23.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
24.
Fotukian
,
S. M.
, and
Nasr Esfahany
,
M.
,
2010
, “
Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute CuO/Water Nanofluid Inside a Circular Tube
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
214
219
.
25.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,” Version 9.1,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
26.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Mahagaonkar
,
B. M.
,
2009
, “
Density Measurements of Different Nanofluids and Their Comparison With Theory
,”
Petrol. Sci. Technol.
,
27
(
6
), pp.
612
624
.
27.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions of Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
28.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
29.
Meybodi
,
M. K.
,
Daryasafar
,
A.
,
Koochi
,
M. M.
,
Moghadasi
,
J.
,
Meybodi
,
R. B.
, and
Ghahfarokhi
,
A. K.
,
2016
, “
A Novel Correlation Approach for Viscosity Prediction of Water Based Nanofluids of Al2O3, TiO2, SiO2 and CuO
,”
J. Taiwan Inst. Chem. Eng.
,
58
, pp.
19
27
.
30.
Kumar
,
P. M.
,
Kumar
,
J.
,
Tamilarasan
,
R.
,
Sendhilnathan
,
S.
, and
Suresh
,
S.
,
2015
, “
Review on Nanofluids Theoretical Thermal Conductivity Models
,”
Eng. J.
,
19
(
1
), pp.
67
83
.
31.
Bejjam
,
R. B.
, and
Kiran Kumar
,
K.
,
2016
, “
Numerical Study on Heat Transfer and Fluid Flow Behavior in Nanofluid Based Single-Phase Natural Circulation Loop
,” ICRTEST, Issue-III, Hyderabad, India, Oct. 23–25, Paper No. PNFE-EP-097.
32.
Nayak
,
A. K.
,
Singh
,
R. K.
, and
Kulkarni
,
P. P.
,
2010
, “
Measurement of Volumetric Thermal Expansion Coefficient of Various Nanofluids
,”
Tech. Phys. Lett.
,
36
(
8
), pp.
696
698
.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.