The oscillatory flows are often utilized in order to augment heat transfer rates in various industrial processes. It is also a well-known fact that nanofluids provide significant enhancement in heat transfer at certain conditions. In this research, heat transfer in an oscillatory pipe flow of both water and water–alumina nanofluid was studied experimentally under low frequency regime laminar flow conditions. The experimental apparatus consists of a capillary tube bundle connecting two reservoirs, which are placed at the top and the bottom ends of the capillary tube bundle. The upper reservoir is filled with the hot fluid while the lower reservoir and the capillary tube bundle are filled with the cold fluid. The oscillatory flow in the tube bundle is driven by the periodic vibrations of a surface mounted on the bottom end of the cold reservoir. The effects of the frequency and the maximum displacement amplitude of the vibrations on thermal convection were quantified based on the measured temperature and acceleration data. It is found that the instantaneous heat transfer rate between de-ionized (DI) water (or the nanofluid)-filled reservoirs is proportional to the exciter displacement. Significantly reduced maximum heat transfer rates and effective thermal diffusivities are obtained for larger capillary tubes. The nanofluid utilized oscillation control heat transport tubes achieve high heat transfer rates. However, heat transfer effectiveness of such systems is relatively lower compared to DI water filled tubes.

References

1.
Tijani
,
M. E. H.
,
Zeegers
,
J. C. H.
, and
De Waele
,
A. T. A. M.
,
2002
, “
The Optimal Stack Spacing for Thermoacoustic Refrigeration
,”
J. Acoust. Soc. Am.
,
112
(
1
), pp.
128
133
.
2.
Nguyen
,
N. T.
, and
White
,
R. M.
,
1999
, “
Design and Optimization of an Ultrasonic Flexural Plate Wave Micropump Using Numerical Simulation
,”
Sens. Actuators
,
77
(
3
), pp.
229
236
.
3.
Chatwin
,
P. C.
,
1975
, “
On the Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes
,”
J. Fluid Mech.
,
71
(
3
), pp.
513
527
.
4.
Watson
,
E. J.
,
1983
, “
Diffusion of Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
(
1
), pp.
233
244
.
5.
Kurzweg
,
U. H.
, and
Zhao
,
L.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
(
11
), pp.
2624
2627
.
6.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME J. Heat Transfer
,
107
(
2
), pp.
459
462
.
7.
Kaviany
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Analysis
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
49
55
.
8.
Kaviany
,
M.
, and
Reckker
,
M.
,
1990
, “
Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
56
63
.
9.
Ozawa
,
M.
, and
Kawamoto
,
A.
,
1991
, “
Lumped-Parameter Modeling of Heat Transfer Enhanced by Sinusoidal Motion of Fluid
,”
Int. J. Heat Mass Transfer
,
34
(
12
), pp.
3038
3095
.
10.
Nishio
,
S.
,
Shi
,
X. H.
, and
Zhang
,
W. M.
,
1995
, “
Oscillation-Induced Heat Transport: Heat Transport Characteristics Along Liquid-Columns of Oscillation-Controlled Heat Transport Tubes
,”
Int. J. Heat Mass Transfer
,
38
(
13
), pp.
2457
2470
.
11.
Furukawa
,
M.
,
2011
, “
Heat Transport by Inverse-Piezoelectric Driven Dream Pipe
,”
ASME J. Heat Transfer
,
133
(10), p. 101701.
12.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Argonne National Laboratory, Lemont, IL, Report Nos. ANL/MSD/CP-84938 and CONF-951135-29.
13.
Eggers
,
J. R.
, and
Kabelac
,
S.
,
2016
, “
Nanofluids Revisited
,”
Appl. Therm. Eng.
,
106
, pp.
1114
1126
.
14.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
,
2008
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
.
15.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
,
2009
, “
Convective Heat Transfer of a Cu/Water Nanofluid Flowing Through a Circular Tube
,”
Exp. Heat Transfer
,
22
(
4
), pp.
217
227
.
16.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Bose
,
A. C.
,
2011
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid in a Circular Pipe Under Transition Flow With Wire Coil Inserts
,”
Heat Transfer Eng.
,
32
(
6
), pp.
485
496
.
17.
Salem
,
M. R.
,
Ali
,
R. K.
,
Sakr
,
R. Y.
, and
Elshazly
,
K. M.
,
2015
, “
Effect of Gamma-Al2O3/Water Nanofluid on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger With Different Coil Curvatures
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041002
.
18.
Mikkola
,
V.
,
Puupponen
,
S.
,
Granbohm
,
H.
,
Saari
,
K.
,
Ala-Nissila
,
T.
, and
Seppälä
,
A.
,
2018
, “
Influence of Particle Properties on Convective Heat Transfer of Nanofluids
,”
Int. J. Therm. Sci.
,
124
, pp.
187
195
.
19.
Rahimi-Gorji
,
M.
,
Pourmehran
,
O.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Unsteady Squeezing Nanofluid Simulation and Investigation of Its Effect on Important Heat Transfer Parameters in Presence of Magnetic Field
,”
J. Taiwan Inst. Chem. Eng.
,
67
, pp.
467
475
.
20.
Biglarian
,
M.
,
Gorji
,
M. R.
,
Pourmehran
,
O.
, and
Domairry
,
G.
,
2017
, “
H2O Based Different Nanofluids With Unsteady Condition and an External Magnetic Field on Permeable Channel Heat Transfer
,”
Int. J. Hydrogen Energy
,
42
(
34
), pp.
22005
22014
.
21.
Guler
,
O. F.
, and
Aktas
,
M. K.
,
2015
, “
Experimental Investigation of Oscillation Controlled Heat Transport Tubes
,”
ASME
Paper No.
IMECE2015-53394.
22.
Guven
,
O.
,
Aktas
,
M. K.
, and
Bayazitoglu
,
Y.
,
2016
, “
Experimental Investigation of Oscillation Controlled Thermal Transport in Water-Based Nanofluids
,”
ASME
Paper No. HT2016-7343.
23.
Holman
,
J.
,
2016
,
Experimental Methods for Engineers
, 8th ed.,
McGraw-Hill
, New York.
24.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
89
.
25.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Bose
,
C. A.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
210
216
.
26.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
You do not currently have access to this content.