This paper deals with the transient thermal analysis of two-dimensional cylindrical anisotropic pin fin that contains tip convection and subjected to a prescribed temperature at the fin base. The heat conduction equation contains a dual second-order derivation, which precludes solving the equation by direct application of common exact methods. Therefore, an appropriate canonical mapping is selected as a solution to cancel the dual derivation of temperature in the mapped equations. The alternating-direction implicit finite difference method (ADI) performs the integration of the mapped equations in the novel space, which involve a complicate geometry. Applying the inverse spatial transformation provides transient temperature profile in the real geometry for full-field configuration. The established numerical code has been validated successfully with the analytical solutions of the usual fins (orthotropic and isotropic). The anisotropy effect is investigated by means of various contour plots of the temperature profile as well as heat transfer rate from the fin base and the effectiveness for different parameters of study (kr/kz,krz/kz,andBir) in transient and steady-state heat conduction. The numerical code allows the study of the thermal behavior of anisotropic, orthotropic, and isotropic cylindrical pin fin according to the geometrical and physical parameters, as well as the thermal conditions to which the pin fin is subjected. A parametric study is performed in view to compare the thermal behavior of the various pin fin kinds submitted to the same conditions.

References

References
1.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Wiley
,
New York
.
2.
Irey
,
R. K.
,
1968
, “
Errors in One-Dimensional Fin Solution
,”
ASME J. Heat Transfer
,
90
(
1
), pp.
175
176
.
3.
Lau
,
W.
, and
Tan
,
C. W.
,
1973
, “
Errors in the One-Dimensional Heat Transfer Analysis in Straight and Annular Fins
,”
ASME J. Heat Transfer
,
95
(
4
), pp.
549
551
.
4.
Levitsky
,
M.
,
1972
, “
Criterion for Validity of the Fin Approximation
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1960
1963
.
5.
Su
,
R. J.
, and
Hwang
,
J. J.
,
1999
, “
Transient Analysis of Two-Dimensional Cylindrical Pin Fin With Tip Convective Effects
,”
Heat Transfer Eng.
,
20
(
3
), pp.
57
63
.
6.
Yang
,
Y.-C.
,
Lee
,
H.-L.
,
Wei
,
E.-J.
,
Lee
,
J.-F.
, and
Wu
,
T.-S.
,
2005
, “
Numerical Analysis of Two Dimensional Pin Fins With Non-Constant Base Heat Flux
,”
Energy Convers. Manage.
,
46
(
6
), pp.
881
892
.
7.
Chauhan
,
S. P.
, and
Singh
,
S.
,
2013
, “
Steady and Unsteady State Thermal Analysis of Fins Using CFD
,”
Int. J. Innovative Res. Stud.
,
2
, pp. 518–526.
8.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
,
2007
, “
Orthotropic Thermal Conductivity Effect on Cylindrical Pin Fin Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1155
1162
.
9.
Zubair
,
S. M.
,
Arif
,
A. F. M.
, and
Sharqawy
,
M. H.
,
2010
, “
Thermal Analysis and Optimization of Orthotropic Pin Fin: A Closed-Form Analytical Solution
,”
ASME J. Heat Transfer
,
132
(
3
), p.
031301
.
10.
Pashah
,
S.
,
Arif
,
A. F. M.
, and
Zubair
,
S. M.
,
2011
, “
Study of Orthotropic Pin Fin Performance Through Axisymmetric Thermal Non-Dimensional Finite Element
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
376
384
.
11.
Sarkar
,
D.
,
Shah
,
K.
,
Haji-Sheikh
,
A.
, and
Jain
,
A.
,
2014
, “
Analytical Modeling of Temperature Distribution in an Anisotropic Cylinder With Circumferentially-Varying Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1027
1033
.
12.
Ma
,
C. C.
, and
Chang
,
S. W.
,
2004
, “
Analytical Exact Solutions of Heat Conduction Problems for Anisotropic Multi-Layered Media
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1643
1655
.
13.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
14.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1997
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
Cambridge University Press
, Cambridge, U.K.
15.
Aslib
,
I.
,
Hamza
,
H.
,
Lahjomri
,
J.
,
Zniber
,
K.
, and
Oubarra
,
A.
,
2016
, “
Numerical Solution of Unsteady Conduction Heat Transfer in Anisotropic Cylinders
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031013
.
You do not currently have access to this content.