Jet impingement cooling has been extensively investigated due to its significant applications on the airfoil leading edge region; however, most of which are about normal jet impingement. The systematic research on swirl jet impinging cooling on leading edge is relatively rare. This study comprehensively investigated the heat transfer distribution of swirl jet impingement with one row of tangential jets. The location of the cross-over jets is offset from the centerline toward either suction or pressure side. Five jet Reynolds numbers varying from 10,000 to 80,000 are tested to reach real engine cooling condition. Jet plates with jet-to-jet spacing (s/d = 2, 4, and 8) and the ratio of surface diameter-to-jet diameter (D/d = 4, 6.6, and 13.3) are tested. We conducted the experiments with a test matrix of 45 cases. The optimum geometric parameters of the jet plate are revealed. Results indicate that for a given Reynolds number, the jet plate configuration with D/d = 4 and s/d = 2 provides the highest Nusselt number profile than the other jet plate configurations, while the jet plate configuration with D/d = 13.3 and s/d = 8 provides the lowest Nusselt number profiles. The best heat transfer region shifts by varying the jet plate configuration depending on the strength of swirl flow. Additionally, correlation of tangential jet impingement has been developed to predict the area-averaged Nusselt number, which is useful for airfoil leading edge cooling design and heat transfer analysis.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Wright
,
L. M.
, and
Han
,
J. C.
,
2014
, “
Heat Transfer Enhancement for Turbine Blade Internal Cooling
,”
J. Enhanced Heat Transfer
,
21
(
2–3
), pp.
111
140
.
3.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement–A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
4.
Chupp
,
R. E.
,
Helms
,
D. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
AIAA J. Aircr.
,
6
(
3
), pp.
203
208
.https://arc.aiaa.org/doi/10.2514/3.44036
5.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
J. Eng. Power
,
92
(
1
), pp.
73
82
.
6.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.
7.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
8.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
9.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Jets
,”
AIAA J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.
10.
Taslim
,
M. E.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), p.
011021
.
11.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2005
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading-Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.
12.
Taslim
,
M. E.
, and
Setayeshgar
,
L.
,
2001
, “
Experimental Leading-Edge Impingement Cooling Through Racetrack Crossover Holes
,”
ASME
Paper No. 001-GT-0153.
13.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122202
.
14.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Effect of Impingement Supply Condition on Leading Edge Heat Transfer With Rounded Impinging Jets
,”
ASME
Paper No. HT2012-58410.
15.
Jordan
,
C. N.
,
Elston
,
C. A.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Leading Edge Impingement With Racetrack-Shaped Jets and Varying Inlet Supply Conditions
,”
ASME
Paper No. GT2013-94611.
16.
Liu
,
Z.
, and
Feng
,
Z. P.
,
2011
, “
Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4949
4959
.
17.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
, 2000, “
Impingement Heat Transfer Measurements Under an Array of Inclined Jets
,”
J. Thermophys. Heat Transfer
,
14
(2), pp. 286–288.
18.
Gau
,
C.
, and
Chung
,
C. M.
,
1991
, “
Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
858
864
.
19.
Metzger
,
D. E.
, and
Bunker
,
R. S.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
20.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part II: Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.
21.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique
,”
Int. J. Rotating Mach.
,
8
(
3
), pp.
164
173
.
22.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
AIAA J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.
23.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R.
,
2005
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,”
ASME J. Turbomach.
,
127
(
2
), pp.
287
296
.
24.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
.
25.
Mhetras
,
S.
,
Han
,
J.-C.
, and
Huh
,
M.
,
2014
, “
Impingement Heat Transfer From Jet Arrays on Turbulent Target Walls at Large Reynolds Numbers
,”
ASME Trans. J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021003
.
26.
Parbat
,
S. N.
,
Siw
,
S. C.
, and
Chyu
,
M.
,
2016
, “
Impingement Cooling in Narrow Rectangular Channel With Novel Surface Features
,”
ASME
Paper No. GT2016-58084.
27.
Buzzard
,
W.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2016
, “
Influences of Target Surface Roughness on Impingement Jet Array Heat Transfer—Part 1: Effects of Roughness Pattern, Roughness Height, and Reynolds Number
,”
ASME
Paper No. GT2016-56354.
28.
Buzzard
,
W.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2016
, “
Influences of Target Surface Roughness on Impingement Jet Array Heat Transfer—Part 2: Effects of Roughness Shape, and Reynolds Number
,”
ASME
Paper No. GT2016-56355.
29.
Hay
,
N.
, and
West
,
P. D.
,
1975
, “
Heat Transfer in Free Swirling Flow in a Pipe
,”
ASME J. Heat Transfer
,
97
(
3
), pp.
411
416
.
30.
Glezer
,
B.
,
Moon
,
H. K.
, and
O'Connell
,
T.
,
1996
, “
A Novel Technique for the Internal Blade Cooling
,”
ASME
Paper No. 96-GT-181.
31.
Moon
,
H. K.
,
O'Connell
,
T.
, and
Glezer
,
B.
, 1998, “
Heat Transfer Enhancement in a Circular Channel Using Lenghtwise Continuous Tangential Injection
,”
ASME J. Heat Transfer
,
6
, pp. 559–564.
32.
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Babinchak
,
B. T.
,
Thambu
,
R.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1998
, “
Flow Phenomena in Swirl Chambers
,”
Exp. Fluids
,
24
(
3
), pp.
254
264
.
33.
Thambu
,
R.
,
Babinchak
,
B. T.
,
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1999
, “
Flow in a Simple Swirl Chamber With and Without Controlled Inlet Forcing
,”
Exp. Fluids
,
26
(
4
), pp.
347
357
.
34.
Rao
,
Y.
,
Biegger
,
C.
, and
Weigand
,
B.
,
2016
, “
Heat Transfer and Pressure Loss in Swirl Tubes With One and Multiple Tangential Jets Pertinent to Gas Turbine Internal Cooling
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1356
1367
.
35.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
, pp.
3
8
.
36.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M. J.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME J. Heat Transfer
,
140
(
6
), p.
062201
.
You do not currently have access to this content.