The steady forced convection between two stationary parallel circular disks in a radial sink flow cooling system is investigated numerically. This investigation is devoted to study the effect of swirling flow and/or grooved surface on the heat transfer and on the thermo-hydraulic parameter. A wide range of inlet Reynolds number (Re), 100 ≤ Re ≤ 105, inlet swirl ratio (S), 0 ≤ S ≤ 20, and the gap spacing ratio (G), 0.01 ≤ G ≤ 0.1 is considered in the study. The rectangular grooves are characterized by ribs with three dimensionless lengths: height (t/δ), 0.1 ≤ t/δ ≤ 0.35, the interval spacing between ribs (i/Ro), 0.025 ≤ i/Ro ≤ 0.1, and the width of rib (w/Ro), 0.025 ≤ w/Ro ≤ 0.1. The results of the heat transfer analysis indicate that the swirling flow enhances the cooling system for plain and ribbed surfaces. However, the thermal hydraulic study indicated that the swirling flow is beneficial for plain surfaces only. And the ribs are beneficial with pure radial inflow.

References

References
1.
Savino
,
J. M.
, and
Keshock
,
E. G.
,
1965
, “
Experimental Profiles of Velocity Components and Radial Pressure Distributions in a Vortex Contained in a Short Cylindrical Chamber
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TN-D-3072
.https://ntrs.nasa.gov/search.jsp?R=19650026239
2.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of Energy Dissipation Model of Turbulence to the Calculation Flow Near A Spinning Disk
,”
Heat Mass Transfer
,
1
(
2
), pp.
131
138
.
3.
Moretti
,
P. M.
, and
Kays
,
W. M.
,
1965
, “
Heat Transfer to a Turbulent Boundary Layer With Varying Free Stream Velocity and Varying Surface Temperature: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
8
(
9
), pp.
1187
1202
.
4.
Murphy
,
H. D.
,
Coxon
,
M.
, and
Mceligot
,
D. M.
,
1978
, “
Symmetric Sink Flow Between Parallel Plates
,”
ASME J. Fluids Eng.
,
100
(
4
), pp.
477
484
.
5.
Singh
,
A.
,
Vyas
,
B. D.
, and
Powle
,
U. S.
,
1999
, “
Investigations on Inward Flow Between Two Stationary Parallel Disks
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
395
401
.
6.
Lee
,
P.-M.
, and
Lin
,
S.
,
1985
, “
Pressure Distribution for Radial Inflow Between Narrowly Spaced Disks
,”
ASME J. Fluids Eng.
,
107
(
3
), pp.
338
341
.
7.
Vatistas
,
G. H.
,
1988
, “
Radial Flow Between Two Closely Placed Disks
,”
AIAA J.
,
26
(
7
), pp.
887
890
.
8.
Vatistas
,
G. H.
,
1990
, “
Radial Flow Within Two Flat Disks
,”
AIAA J.
,
28
(
7
), pp.
1308
1310
.
9.
Vatistas
,
G. H.
,
Ghila
,
A.
, and
Zitouni
,
G.
,
1995
, “
Radial Inflow Between Two Flat Disks
,”
Acta Mech.
,
113
(
1–4
), pp.
109
118
.
10.
Vatistas
,
G. H.
,
Fayed
,
M.
, and
Soroardy
,
J. U.
,
2008
, “
Strongly Swirling Turbulent Sink Flow Between Two Stationary Disks
,”
J. Propul. Power
,
24
(
2
), pp.
295
301
.
11.
Zitouni
,
G.
, and
Vatistas
,
G. H.
,
1997
, “
Purely Accelerating and Decelerating Flows Within Two Flat Disks
,”
Acta Mech.
,
123
(
1–4
), pp.
151
161
.
12.
Singh
,
A.
,
2014
, “
Inward Flow Between Stationary and Rotating Disks
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
101205
.
13.
Dos Santos Bernardes
,
M. A.
,
2003
, “
Symmetric Sink Flow and Heat Transfer Between Two Parallel Disks
,”
ASME
Paper No.
HT2003-47103.
14.
Aurélio Dos Santos Bernardes
,
M.
,
Von Backström
,
T. W.
, and
Kröger
,
D. G.
,
2009
, “
Analysis of Some Available Heat Transfer Coefficients Applicable to Solar Chimney Power Plant Collectors
,”
Sol. Energy
,
83
(
2
), pp.
264
275
.
15.
Aurélio Dos Santos Bernardes
,
M. A.
,
2011
, “
Convective Heat Transfer Coefficients for Solar Chimney Power Plant Collectors
,” Heat Transfer—Mathematical Modelling Numerical Methods and Information Technology, IntechOpen Limited, London, pp.
607
620
.
16.
Aurélio Dos Santos Bernardes
,
M. A.
,
2017
, “
Correlations for the Symmetric Converging Flow and Heat Transfer Between Two Nearly Parallel Stationary Disks Similar to a Solar Updraft Power Plant Collector
,”
Sol. Energy
,
146
, pp.
309
318
.
17.
Banerjee
,
B.
,
Chalapathi Rao
,
K. V.
, and
Sastri
,
V. M. K.
,
1988
, “
Heat Transfer From Co-Rotating and Stationary Parallel Concentric Disks With Internal Heat Generation
,”
Exp. Therm. Fluid Sci.
,
1
(
2
), pp.
195
206
.
18.
Yuan
,
Z. X.
,
Saniei
,
N.
, and
Yan
,
X. T.
,
2003
, “
Turbulent Heat Transfer on the Stationary Disk in a Rotor–Stator System
,”
Int. J. Heat Mass Transfer
,
46
(
12
), pp.
2207
2218
.
19.
Tashtoush
,
B.
,
Tahat
,
M.
, and
Probert
,
D.
,
2001
, “
Heat Transfers and Radial Flows Via a Viscous Fluid Squeezed Between Two Parallel Disks
,”
Appl. Energy
,
68
(
3
), pp.
275
288
.
20.
Sorour
,
M. M.
, and
Motte1eb
,
Z. A.
,
1984
, “
Effect of Design Parameters on the Performance of Channel Type Solar Energy Air Heaters With Corrugated Plates
,”
Appl. Energy
,
17
(3), pp.
181
190
.
21.
Sharma
,
S. K.
, and
Kalamkar
,
V. R.
,
2017
, “
Experimental and Numerical Investigation of Forced Convective Heat Transfer in Solar Air Heater With Thin Ribs
,”
Sol. Energy
,
147
, pp.
277
291
.
22.
Skullong
,
S.
,
Promvonge
,
P.
,
Thianpong
,
C.
,
Jayranaiwachira
,
N.
, and
Pimsarn
,
M.
,
2017
, “
Heat Transfer Augmentation in a Solar Air Heater Channel With Combined Winglets and Wavy Grooves on Absorber Plate
,”
Appl. Therm. Eng.
,
122
, pp.
268
284
.
23.
Yang
,
Y.-T.
, and
Chen
,
P.-J.
,
2015
, “
Numerical Optimization of Turbulent Flow and Heat Transfer Characteristics in a Ribbed Channel
,”
Heat Transfer Eng.
,
36
(
3
), pp.
290
302
.
24.
Karthikeyan
,
S.
,
Elumalai
,
N.
, and
Narasingamurthi
,
K.
,
2015
, “
Experimental Study of Developing Turbulent Flow and Heat Transfer in Ribbed Convergent/Divergent Rectangular Ducts
,”
Therm. Sci.
,
19
(
6
), pp.
2219
2231
.
25.
Nouri-Borujerdi
,
A.
, and
Nakhchi
,
M. E.
,
2017
, “
Heat Transfer Enhancement in Annular Flow With Outer Grooved Cylinder and Rotating Inner Cylinder: Review and Experiments
,”
Appl. Therm. Eng.
,
120
, pp.
257
268
.
26.
Eiamsa-Ard
,
S.
, and
Promvonge
,
P.
,
2008
, “
Numerical Study on Heat Transfer of Turbulent Channel Flow Over Periodic Grooves
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
844
852
.
You do not currently have access to this content.