Experimental and numerical research is performed to illustrate the effects of pin-fin shapes on mesh-fed slot film cooling performance on a flat-plate model. Three types of pin-fin shapes (such as circular, elliptical, and drop-shaped) with the same cross-sectional area are taken into consideration. The results show that a pair of counter rotating vortices is still generated for the mesh-fed slot film cooling scheme due to the strong “jetting” effect of coolant flow at the slot outlet. As the coolant jet ejecting from mesh-fed slot is capable of establishing more uniform film layer over the protected surface, the kidney vortices are illustrated to have weakly detrimental role on the film cooling performance. By the shaping of pin fins, the uniformity of coolant flow exiting mesh-fed slot is improved in comparison to the baseline case of circular shape, especially for the elliptical-shape pin-fin array. Therefore, the jetting effect of coolant flow is alleviated for the elliptical and drop-shaped pin-fin meshes when compared to the circular pin-fin mesh. In general, the pin-fin shape has nearly no influence on cooling effectiveness immediately downstream the film cooling-hole outlet. However, beyond x/s = 5, the elliptical and drop-shaped pin fins are demonstrated to be advantageous over the circular pin fins.

References

References
1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
2.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
3.
Bunker
,
R. S.
,
2005
, “
A Review of Turbine Shaped Film Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
4.
Gritsch
,
M.
,
Colban
,
W.
, and
Schar
,
H.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
5.
Nguyen
,
C. Q.
,
Johnson
,
P. L.
,
Bernier
,
B. C.
,
Ho
,
S. H.
, and
Kapat
,
J. S.
,
2011
, “
Comparison of Film Effectiveness and Cooling Uniformity of Conical and Cylindrical-Shaped Film Hole With Coolant-Exit Temperature Correction
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031011
.
6.
Okita
,
Y.
, and
Nishiura
,
M.
,
2007
, “
Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry
,”
ASME J. Turbomach.
,
129
(
2
), pp.
331
339
.
7.
Liu
,
J. S.
,
Malak
,
M. F.
,
Tapia
,
L. A.
,
Crites
,
D. C.
,
Ramachandran
,
D.
,
Srinivasan
,
B.
,
Muthiah, G.
, and
Venkataramanan, J.
,
2010
, “
Enhanced Film Cooling Effectiveness With New Shaped Holes
,”
ASME
Paper No. GT2010-22774.
8.
Yang
,
C. F.
, and
Zhang
,
J. Z.
,
2012
, “
Experimental Investigation on Film Cooling Characteristics From a Row of Holes With Ridge-Shaped Tabs
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
113
120
.
9.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
.
10.
Ramesh
,
S.
,
LeBlanc
,
C.
,
Narzary
,
D.
,
Ekkad
,
S.
, and
Alvin
,
M. A.
,
2017
, “
Film Cooling Performance of Tripod Antivortex Injection Holes Over the Pressure and Suction Surfaces of a Nozzle Guide Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021006
.
11.
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
1998
, “
Coolant Passages for Gas Turbine Components
,” U.K. Patent No. 9821639.3.
12.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
13.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.
14.
Azzi
,
A.
, and
Jubran
,
B. A.
,
2007
, “
Numerical Modelling of Film Cooling From Converging Slot Hole
,”
Heat Mass Transfer
,
43
(
4
), pp.
381
388
.
15.
Yao
,
Y.
, and
Zhang
,
J. Z.
,
2011
, “
Investigation on Film Cooling Characteristics From a Row of Converging Slot-Holes on Flat Plate
,”
Sci. China Technol. Sci.
,
54
(
7
), pp.
1793
1800
.
16.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2009
, “
Experimental Research on the Thermal Performance of Converging Slot Holes With Different Divergence Angles
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
808
817
.
17.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2011
, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
ASME J. Turbomach.
,
133
(
1
), p.
011020
.
18.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2010
, “
Film Cooling Performance of Converging Slot-Hole Rows on a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5232
5241
.
19.
Yao
,
Y.
,
Zhang
,
J. Z.
, and
Wang
,
L. P.
,
2013
, “
Film Cooling on a Gas Turbine Blade Suction Side With Converging Slot-Hole
,”
Int. J. Therm. Sci.
,
65
, pp.
267
279
.
20.
Yao
,
Y.
,
Zhang
,
J. Z.
, and
Tan
,
X. M.
,
2014
, “
Numerical Study of Film Cooling From Converging Slot-Hole on a Gas Turbine Blade Suction Side
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
61
72
.
21.
Pu
,
J.
,
Wang
,
J. H.
,
Ma
,
S. Y.
, and
Wu
,
X. Y.
,
2015
, “
An Experimental Investigation of Geometric Effect of Upstream Converging Slot-Hole on End-Wall Film Cooling and Secondary Vortex Characteristics
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
58
72
.
22.
Zhang
,
J. Z.
,
Zhu
,
X. D.
,
Huang
,
Y.
, and
Wang
,
C. H.
,
2017
, “
Investigation on Film Cooling Performance From a Row of Round-to-Slot Holes on Flat Plate
,”
Int. J. Therm. Sci.
,
118
, pp.
207
225
.
23.
Davidson
,
F. T.
,
Bruce-Black
,
J. E.
,
Bogard
,
D. G.
, and
Johns
,
D. R.
,
2008
, “
Adiabatic Effectiveness on the Suction Side of a Turbine Vane and the Effects of Curvature at the Point of Film Injection
,”
ASME
Paper No. GT2008-51350.
24.
Bruce-Black
,
J. E.
,
Davidson
,
F. T.
,
Bogard
,
D. G.
, and
Johns
,
D. R.
,
2011
, “
Practical Slot Configurations for Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
133
(
3
), p.
031020
.
25.
An
,
B. T.
,
Liu
,
J. J.
,
Zhou
,
S. J.
,
Zhang
,
X. D.
, and
Zhang
,
C.
,
2016
, “
Film Cooling Investigation of a Slot-Based Diffusion Hole
,”
ASME
Paper No. GT2016-56175.
26.
Lee
,
C. P.
, and
Bunker
,
R. S.
,
2006
, “
Thermal Shield Turbine Airfoil
,” General Electric Co, Boston, MA, U.S. Patent No.
7,011,502
.https://patents.google.com/patent/US7011502B2/en
27.
Bunker
,
R. S.
,
2011
, “
A Study of Mesh-Fed Slot Film Cooling
,”
ASME J. Turbomach.
,
131
(
1
), p.
011022
.
28.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.
29.
Jaswal
,
I.
, and
Ames
,
F. E.
,
2009
, “
Heat Transfer and Pressure Drop Measurements in Constant and Converging Section Pin and Diamond Pedestal Arrays
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
1
), p.
011006
.
30.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
31.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
32.
Li
,
Q.
,
Chen
,
Z.
,
Flechtner
,
U.
, and
Warnecke
,
H. J.
,
1998
, “
Heat Transfer and Pressure Drop Characteristics in Rectangular Channels With Elliptic Pin Fins
,”
Int. J. Heat Fluid Flow
,
19
(
3
), pp.
245
250
.
33.
Chen
,
Z.
,
Li
,
Q.
,
Meier
,
D.
, and
Warnecke
,
H. J.
,
1997
, “
Convective Heat Transfer and Pressure Loss in Rectangular Ducts With Drop-Shaped Pin Fins
,”
Heat Mass Transfer
,
33
(
3
), pp.
219
224
.
34.
Wang
,
F. M.
,
Zhang
,
J. Z.
, and
Wang
,
S. F.
,
2012
, “
Investigation on Flow and Heat Transfer Characteristics in Rectangular Channel With Drop-Shaped Pin Fins
,”
Propul. Power Res.
,
1
(
1
), pp.
64
70
.
35.
Kundu
,
B.
,
Das
,
R.
,
Wankhade
,
P. A.
, and
Lee
,
K. S.
, “
Heat Transfer Improvement of a Wet Fin Under Transient Response With a Unique Design Arrangement Aspect
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1239
1251
.
36.
Das
,
R.
, and
Kundu
,
B.
,
2018
, “
Direct and Inverse Approaches for Analysis and Optimization of Fins Under Sensible and Latent Heat Load
,”
Int. J. Heat Mass Transfer
,
124
, pp.
331
343
.
37.
Das
,
R.
, and
Kundu
,
B.
,
2018
, “
Estimation of Internal Heat Generation in a Fin Involving All Modes of Heat Transfer Using Golden Section Search Method
,”
Heat Transfer Eng.
,
39
(
1
), pp.
58
71
.
38.
Wankhade
,
P. A.
,
Kundu
,
B.
, and
Das
,
R.
,
2018
, “
Establishment of Non-Fourier Heat Conduction Model for an Accurate Transient Thermal Response in Wet Fins
,”
Int. J. Heat Mass Transfer
,
126
, pp.
911
923
.
39.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.
40.
Zuniga
,
H. A.
, and
Jayanta
,
S. K.
,
2009
, “
Effect of Increasing Pitch-to-Diameter Ratio on the Film Cooling Effectiveness of Shaped and Cylindrical Holes Embedded in Trenches
,”
ASME
Paper No. GT2009-60080.
41.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
42.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
43.
ANSYS
,
2012
, “
ANSYS Fluent 14.0 User's Guide
,” ANSYS, Canonsburg, PA.
44.
Harrison
,
K.
, and
Bogard
,
D.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-50366.
45.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.
46.
Ely
,
M. J.
, and
Jubran
,
B. J.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Filed
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.
47.
Jia
,
R. G.
,
Sunden
,
B.
,
Miron
,
P.
, and
Leger
,
B.
,
2005
, “
A Numerical and Experimental Investigation of the Slot Film-Cooling Jet With Various Angles
,”
ASME J. Turbomach.
,
127
(
3
), pp.
635
645
.
48.
Cruz
,
C. A.
,
Raffan
,
F.
,
Cadou
,
C.
, and
Marshall
,
A. W.
,
2006
, “
Characterizing Slot Film Cooling Through Detailed Experiments
,”
ASME
Paper No. IMECE2006-15899.
You do not currently have access to this content.