Determination of core body temperature (Tc), a measure of metabolic rate, in firefighters is needed to avoid heat-stress related injury in real time. The measurement of Tc is neither routine nor trivial. This research is significant as thermal model to determine Tc is still fraught with uncertainties and reliable experimental data for validation are rare. The objective of this study is to develop a human thermoregulatory model that uses the heart rate measurements to obtain Tc for firefighters using a 3D whole body model. The hypothesis is that the heart rate-derived computed Tc correlates with the measured Tc during firefighting activities. The transient thermal response of the human body was calculated by simultaneously solving the Pennes' bioheat and energy balance equations. The difference between experimental and numerical values of Tc was less than 2.6%. More importantly, a ± 10% alteration in heart rate was observed to have appreciable influence on Tc, resulting in a ± 1.2 °C change. A 10% increase in the heart rate causes a significant relative % increase (52%) in Tc, considering its allowable/safe limit of 39.5 °C. Routine acquisition of the heart rate data during firefighting scenario can be used to derive Tc of firefighters in real time using the proposed 3D whole body model.

References

References
1.
Budd
,
G. M.
,
Brotherhood
,
J.
,
Hendrie
,
A.
,
Jeffery
,
S.
,
Beasley
,
F.
,
Costin
,
B.
,
Zhien
,
W.
,
Baker
,
M.
,
Cheney
,
N.
, and
Dawson
,
M.
,
1997
, “
Project Aquarius 1. Stress, Strain, and Productivity in Men Suppressing Australian Summer Bushfires With Hand Tools: Background, Objectives, and Methods
,”
Int. J. Wildland Fire
,
7
(
2
), pp.
69
76
.
2.
Gribok
,
A. V.
,
Buller
,
M. J.
,
Hoyt
,
R. W.
, and
Reifman
,
J.
,
2010
, “
A Real-Time Algorithm for Predicting Core Temperature in Humans
,”
IEEE Trans. Inf. Technol. Biomed.
,
14
(
4
), pp.
1039
1045
.
3.
Psikuta
,
A.
,
Richards
,
M.
, and
Fiala
,
D.
,
2008
, “
Single-Sector Thermophysiological Human Simulator
,”
Physiol. Meas.
,
29
(
2
), p.
181
.
4.
Psikuta
,
A.
,
Wang
,
L.-C.
, and
Rossi
,
R. M.
,
2013
, “
Prediction of the Physiological Response of Humans Wearing Protective Clothing Using a Thermophysiological Human Simulator
,”
J. Occup. Environ. Hyg.
,
10
(
4
), pp.
222
232
.
5.
Fiala
,
D.
,
Lomas
,
K. J.
, and
Stohrer
,
M.
,
1999
, “
A Computer Model of Human Thermoregulation for a Wide Range of Environmental Conditions: The Passive System
,”
J. Appl. Physiol.
,
87
(
5
), pp.
1957
1972
.
6.
Kim
,
J.-H.
,
Williams
,
W. J.
,
Coca
,
A.
, and
Yokota
,
M.
,
2013
, “
Application of Thermoregulatory Modeling to Predict Core and Skin Temperatures in Firefighters
,”
Int. J. Ind. Ergonom.
,
43
(
1
), pp.
115
120
.
7.
Wissler
,
E.
,
1985
, “
Mathematical Simulation of Human Thermal Behavior Using Whole Body Models
,”
Heat Transfer Med. Biol.
,
1
(
13
), pp.
325
373
.
8.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.
9.
Salloum
,
M.
,
Ghaddar
,
N.
, and
Ghali
,
K.
,
2007
, “
A New Transient Bioheat Model of the Human Body and Its Integration to Clothing Models
,”
Int. J. Therm. Sci.
,
46
(
4
), pp.
371
384
.
10.
Smith
,
C. E.
,
1991
,
A Transient, Three-Dimensional Model of the Human Thermal System
,
Kansas State University
, Manhattan, KS.
11.
Wang
,
F.
,
Kuklane
,
K.
,
Gao
,
C.
, and
Holmer
,
I.
,
2011
, “
Can the PHS Model (ISO7933) Predict Reasonable Thermophysiological Responses While Wearing Protective Clothing in Hot Environments?
,”
Physiol. Meas.
,
32
(
2
), pp.
239
249
.
12.
Paul
,
A. K.
,
Zachariah
,
S.
,
Zhu
,
L.
, and
Banerjee
,
R. K.
,
2015
, “
Predicting Temperature Changes During Cold Water Immersion and Exercise Scenarios: Application of a Tissue–Blood Interactive Whole-Body Model
,”
Numer. Heat Transfer, Part A: Appl.
,
68
(
6
), pp.
598
618
.
13.
Paul
,
A. K.
,
Zachariah
,
S. A.
,
Zhu
,
L.
, and
Banerjee
,
R. K.
,
2013
, “
Theoretical Predictions of Body Tissue and Blood Temperature During Cold Water Immersion Using a Whole Body Model
,”
ASME
Paper No. SBC2013-14398
.
14.
Zachariah
,
S. A.
,
2015
, “
Prediction of Core Body Temperature Sweat Rate Cardiac Output and Stroke Volume for Firefighters Using a 3D Whole Body Model, 2014 World Congress of Biomechanics Student Paper Competition
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020207
.
15.
Kalathil
,
R. T.
,
D'Souza
,
G. A.
,
Bhattacharya
,
A.
, and
Banerjee
,
R. K.
,
2016
, “
Uncertainty Analysis of the Core Body Temperature Under Thermal and Physical Stress Using a Three-Dimensional Whole Body Model
,”
ASME J. Heat Transfer
,
139
(
3
), p.
031102
.
16.
Horn
,
G. P.
,
Blevins
,
S.
,
Fernhall
,
B.
, and
Smith
,
D. L.
,
2013
, “
Core Temperature and Heart Rate Response to Repeated Bouts of Firefighting Activities
,”
Ergonomics
,
56
(
9
), pp.
1465
1473
.
17.
Mani
,
A.
,
Musolin
,
K.
,
James
,
K.
,
Kincer
,
G.
,
Alexander
,
B.
,
Succop
,
P.
,
Lovett
,
W.
,
Jetter
,
W. A.
, and
Bhattacharya
,
A.
,
2013
, “
Risk Factors Associated With Live Fire Training: Buildup of Heat Stress and Fatigue, Recovery and Role of Micro-Breaks
,”
Occup. Ergonom.
,
11
(
2
), pp.
109
121
.
18.
Fernhall
,
B.
,
Fahs
,
C. A.
,
Horn
,
G.
,
Rowland
,
T.
, and
Smith
,
D.
,
2012
, “
Acute Effects of Firefighting on Cardiac Performance
,”
Eur. J. Appl. Physiol.
,
112
(
2
), pp.
735
741
.
19.
Lawson
,
J. R.
,
Walton
,
W. D.
,
Bryner
,
N. P.
, and
Amon
,
F. K.
,
2005
, “
Estimates of Thermal Properties for Fire Fighters' Protective Clothing Materials
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 7282.
20.
Prasad
,
K.
,
Twilley
,
W. H.
, and
Lawson
,
J. R.
,
2002
, “
Thermal Performance of Fire Fighters' Protective Clothing: Numerical Study of Transient Heat and Water Vapor Transfer
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 6881.
21.
Zhu
,
L.
, and
Kutz
,
M.
,
2003
, “
Bioheat Transfer
,”
Standard Handbook of Biomedical Engineering and Design
, McGraw Hill, Baltimore, MD.
22.
ISO
,
2004
, “
Ergonomics of the Thermal Environment–Determination of Metabolic Rate
,” British Standards Institution, London, Standard No. B. ISO 8996:2004.
23.
Despopoulos
,
A.
, and
Silbernagl
,
S.
,
2003
,
Color Atlas of Physiology
,
Thieme Stuttgart
,
New York
.
24.
Zhu
,
L.
,
Schappeler
,
T.
,
Cordero-Tumangday
,
C.
, and
Rosengart
,
A.
,
2009
, “
Thermal Interactions Between Blood and Tissue
,”
Adv. Numer. Heat Transfer
,
3
, pp. 197–219.
25.
Schappeler
,
T. E.
,
2009
,
Development of an FEA-Based Whole-Body Human Thermal Model for Evaluating Blood Cooling/Warming Techniques
,
University of Maryland
,
Baltimore County, MD
.
26.
Handbook
,
A.
,
2009
,
ASHRAE Handbook–Fundamentals
, The American Society of Heating, Refrigerating and Air-Conditioning Engineers,
Atlanta, GA
.
You do not currently have access to this content.