In this article, magnetohydrodynamic (MHD) mixed convection in an exponentially stretchable surface saturated with viscous fluid has been studied. BVPh 2.0 is employed which is mathematica-based algorithm created on the basis of optimal homotopy analysis method (OHAM). Adequate transformations are utilized for the conversion of governing system into nonlinear ordinary differential system. Convergence of BVPh 2.0 results is demonstrated through tabular values of squared residual errors. Graphical analysis is executed for broad range of governing parameters. It has been revealed an increase in buoyancy leads to the growth of boundary layer width. Further results predict the heat infiltration into the fluid increases as Brownian motion and Biot number enlarges. Mathematically this work exhibits the potential of BVPh 2.0 for nonlinear differential systems.

References

References
1.
Choi
,
S. U.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles, Developments and Applications of Non-Newtonian Flows
,”
ASME MD. Fed.
,
231
, pp.
99
105
.
2.
Das
,
S. K.
,
Choi
,
S. U.
,
Yu
,
W.
, and
Pardeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
3.
Wang
,
X. Q.
, and
Mujundar
,
A. S.
,
2008
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
613
630
.
4.
Xu
,
H.
, and
Pop
,
I.
,
2012
, “
Fully Developed Mixed Convection Flow in a Vertical Channel Filled With Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1086
1092
.
5.
Gorsan
,
T.
, and
Pop
,
I.
,
2012
, “
Fully Developed Mixed Convection in a Vertical Channel Filled by a Nanofluid
,”
ASME J. Heat Transfer
,
134
(8), p. 082501.
6.
Xu
,
H.
,
Fan
,
T.
, and
Pop
,
I.
,
2013
, “
Analysis of Mixed Convection Flow of a Nanofluid in a Vertical Channel With the Buongiorno Mathematical Model
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
15
22
.
7.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Stagnation-Point Flow Over a Stretching/Shrinking Sheet in a Nanofluid
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
623
.
8.
Alsaedi
,
A.
,
Awais
,
M.
, and
Hayat
,
T.
,
2012
, “
Effects of Heat Generation/Absorption on Stagnation Point Flow of Nanofluid Over a Surface With Convective Boundary Conditions
,”
Commun. Nonlinear Sci. Nummer. Simul.
,
17
(
11
), pp.
4210
4223
.
9.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2011
, “
Boundary Layer Flow of a Nanofluid Past a Stretching Sheet With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1326
1332
.
10.
Mustafa
,
M.
,
Hayat
,
T.
,
Pop
,
I.
,
Asghar
,
S.
, and
Obiadat
,
S.
,
2011
, “
Stagnation-Point Flow of a Nanofluid Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5588
5594
.
11.
Ibrahim
,
W.
,
Shankar
,
B.
, and
Nandeppanavar
,
M. M.
,
2013
, “
MHD Stagnation Point Flow and Heat Transfer Due to Nanofluids Towards a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
1
9
.
12.
Pal
,
D.
,
Mandal
,
G.
, and
Vajravelu
,
K.
,
2014
, “
Flow and Heat Transfer of Nanofluids at a Stagnation Point Flow Over a Stretching/Shrinking Surface in a Porous Medium With Thermal Radiation
,”
Appl. Math. Comput.
,
238
, pp.
208
224
.
13.
Zhang
,
C.
,
Zheng
,
L.
, and
Chen
,
G.
,
2014
, “
MHD Flow and Radiation Heat Transfer of Nanofluids in Porous Media With Variable Surface Heat Flux and Chemical Radiation
,”
Appl. Math. Model.
,
39
(
1
), pp.
165
181
.
14.
Ahmad
,
J.
,
Shahzad
,
A.
,
Khan
,
M.
, and
Ali
,
R.
,
2015
, “
A Note on Convective Heat Transfer of an MHD Jeffery Fluid Over a Stretching Sheet
,”
AIP Adv.
,
5
(
11
), p.
117117
.
15.
Malik
,
M. Y.
,
Hussain
,
A.
,
Salahuddin
,
T.
, and
Awais
,
M.
,
2016
, “
Effects of Viscous Dissipation on MHD Boundary Layer Flow of Sisko Fluid Over a Stretching Cylinder
,”
AIP Adv.
,
6
(
3
), p.
035009
.
16.
Hayat
,
T.
,
Farooq
,
M.
,
Alsaedi
,
A.
, and
Al-Solamy
,
F.
,
2015
, “
Impact of Cattaneo-Christov Heat Flux in the Flow Over a Stretching Sheet With Variable Thickness
,”
AIP Adv.
,
5
(
8
), p.
087159
.
17.
Malik
,
M. Y.
,
Khan
,
I.
,
Hussain
,
A.
, and
Salahuddin
,
T.
,
2015
, “
Mixed Convection Flow of MHD Eyring-Powell Nanofluid Over a Stretching Sheet: A Numerical Study
,”
AIP Adv.
,
5
(11), p.
117117
.
18.
Mehmood
,
K.
,
Hussain
,
S.
, and
Sagheer
,
M.
,
2016
, “
Mixed Convective Flow With Non-Uniform Heat Source/Sink in a Doubly Stratified Magnetonanofluid
,”
AIP Adv.
,
6
(
6
), p.
065126
.
19.
Ahmad
,
K.
,
Hanouf
,
Z.
, and
Ishak
,
A.
,
2016
, “
Mixed Convection Jeffery Fluid Flow Over an Exponentially Stretching Sheet With Magnetohydrodynamic Effect
,”
AIP Adv.
,
6
(
3
), p.
035024
.
20.
Ashraf
,
M.
,
Hayat
,
T.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2015
, “
Mixed Convective Radiative Flow of Three Dimensional Maxwell Fluid Over an Inclined Stretching Sheet in Presence of Thermophoresis and Convective Condition
,”
AIP Adv.
,
5
(
2
), p.
027134
.
21.
Rashidi
,
M. M.
,
Anwar Beg
,
O.
,
Asadi
,
M.
, and
Rastegari
,
M. T.
,
2012
, “
DTM-Pade Modelling of Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Surface
,”
Int. J. Therm. Environ. Eng.
,
4
(
1
), pp.
13
24
.https://pdfs.semanticscholar.org/b399/1f1f5b0a157e61293c77f16f9cf907462d3c.pdf?_ga=2.71108752.1840688416.1541736980-1444657838.1541736980
22.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D. D.
, and
Soleimani
,
S.
,
2014
, “
Heat Flux Boundary Condition for Nanofluid Filled Enclosure in Presence of Magnetic Field
,”
J. Moleqular Liq.
,
193
, pp.
174
184
.
23.
Sheikholeslami
,
M.
,
Sheikholeslami
,
F. B.
,
Khoshhal
,
S.
,
Mola-Abasia
,
H.
,
Ganji
,
D. D.
, and
Ronki
,
H. B.
,
2014
, “
Effect of Magnetic Field on Cu-Water Nanofluid Heat Transfer Using GMDH-Type Neural Network
,”
Neural Comput. Appl.
,
25
(
1
), pp.
171
178
.
24.
Turkyilmazoglu
,
M.
,
2013
, “
Unsteady Convection Flow of Some Nanofluids Past a Moving Vertical Flate Plate With Heat Transfer
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031704
.
25.
Turkyilmazoglu
,
M.
,
2012
, “
Exact Analytic Solutions for Heat and Mass Transfer of MHD Slip Flow in Nanofluids
,”
Chem. Eng. Sci.
,
84
, pp.
182
187
.
26.
Liao
,
S.
,
2010
, “
An Optimal Homotopy Analysis Approach for Strongly Nonlinear Differential Equaitons
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
8
), pp.
2003
2016
.
27.
Turkyilmazoglu
,
M.
,
2016
, “
An Effective Approach for Evaluation of the Optimal Convergence Control Parameter in the Homotopy Analysis Method
,”
Filomat
,
30
(
6
), pp.
1633
1650
.
28.
Farooq
,
U.
, and
Liao
,
S.
,
2013
, “
Nonlinear Heat Transfer in a Two-Layer Flow With Nanofluids by OHAM
,”
ASME J. Heat Transfer
,
136
(
2
), p.
021702
.
29.
Farooq
,
U.
,
Zhao
,
Y. L.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Liao
,
S. J.
,
2015
, “
Application of the HAM-Based Mathematica Package BVPh2.0 on MHD Falkner-Skan Flow of Nanofluid
,”
Comput. Fluids
,
111
, pp.
69
75
.
30.
Nadeem
,
S.
,
Mehmood
,
R.
, and
Akbar
,
N. S.
,
2014
, “
Optimized Analytical Solution for Oblique Flow of a Casson Nanofluid With Convective Boundary Conditions
,”
Int. J. Therm. Sci.
,
78
, pp.
90
100
.
31.
Jing
,
Z.
,
Yang
,
D.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
,
2015
, “
Second-Order Slip Effects on Heat Transfer of Nanofluids With Reynolds Model of Viscosity in a Coaxial Cylinder
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
16
(
6
), pp.
285
292
.
32.
Jing
,
Z.
,
Yang
,
D.
,
Zheng
,
L. C.
, and
Zhang
,
X. X.
,
2016
, “
Effects of Second Order Velocity Slip and Nanoparticles Migration on Flow of Buongiorno Nanofluid
,”
Appl. Math. Lett.
,
52
, pp.
183
191
.
33.
Zhong
,
X.
, and
Liao
,
S.
,
2017
, “
Analytic Solutions of Von Kármán Plate Under Arbitrary Uniform Pressure: Equations in Differential Form
,”
Stud. Appl. Math.
,
138
(
4
), pp. 371–400.https://onlinelibrary.wiley.com/doi/abs/10.1111/sapm.12158
34.
Zhong
,
X.
, and
Liao
,
S.
,
2017
, “
Analytic Approximations of Von Karman Plate Under Arbitrary Uniform Pressure—Equations in Integral Form
,”
Sci. China Phys., Mech. Astron.
,
61
, p. 014611.
35.
Zhong
,
X.
, and
Liao
,
S.
,
2016
, “
On the Homotopy Analysis Method for Backward/Forward-Backward Stochastic Differential Equations
,”
Numer. Algorithms
,
76
(
2
), pp. 487–519.
36.
Turkyilmazoglu
,
M.
,
2017
, “
Condensation of Laminar Film Over Curved Vertical Walls Using Single and Two-Phase Nanofluid Models
,”
Eur. J. Mech.—B/Fluids
,
65
, pp.
184
191
.
37.
Khan
,
W. A.
,
2013
, “
Buongiorno Model for Nanofluid Blasius Flow With Surface Heat and Mass Fluxes
,”
J. Thermophys. Heat Transfer
,
27
(
1
), pp.
134
141
.
38.
Turkyilmazoglu
,
M.
,
2016
, “
Determination of the Correct Range of Physical Parameters in the Approximate Analytical Solutions of Nonlinear Equations Using the Adomian Decomposition Method
,”
Mediterr. J. Math.
,
13
(
6
), pp.
4019
4037
.
You do not currently have access to this content.