Nanofluids are suspensions of nanosized particles in any base fluid that show significant enhancement of their heat transfer properties at modest nanoparticle concentrations. Due to enhanced thermal properties at low nanoparticle concentration, it is a potential candidate for utilization in nuclear heat transfer applications. In the last decade, there have been few studies which indicate possible advantages of using nanofluids as a coolant in nuclear reactors during normal as well as accidental conditions. In continuation with these studies, the utilization of nanofluids as a viable candidate for emergency core cooling in nuclear reactors is explored in this paper by carrying out experiments in a scaled facility. The experiments carried out mainly focus on quenching behavior of a simulated nuclear fuel rod bundle by using 1% Alumina nanofluid as a coolant in emergency core cooling system (ECCS). In addition, its performance is compared with water. In the experiments, nuclear decay heat (from 1.5% to 2.6% reactor full power) is simulated through electrical heating. The present experiments show that, from heat transfer point of view, alumina nanofluids have a definite advantage over water as coolant for ECCS. Additionally, to assess the suitability of using nanofluids in reactors, their stability was investigated in radiation field. Our tests showed good stability even after very high dose of radiation, indicating the feasibility of their possible use in nuclear reactor heat transfer systems.

References

References
1.
Buongiorno
,
J.
,
2005
, “
Convective Heat Transfer in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
2.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Kulkarni
,
D. P.
,
2010
, “
Development of New Correlations for Convective Heat Transfer and Friction Factor in Turbulent Regime for Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4607
4618
.
3.
Heyhat
,
M. M.
,
Kowsary
,
F.
,
Rashidi
,
A. M.
,
Esfehani
,
S. A. V.
, and
Amrollahi
,
A.
,
2012
, “
Experimental Investigation of Turbulent Flow and Convective Heat Transfer Characteristics of Alumina Water Nanofluids in Fully Developed Flow Regime
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1272
1278
.
4.
Sundar
,
L. S.
, and
Singh
,
M. K.
,
2013
, “
Convective Heat Transfer and Friction Factor Correlations of Nanofluid in a Tube and With Inserts: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
23
35
.
5.
Fang
,
X.
,
Wang
,
R.
,
Chen
,
W.
,
Zhang
,
H.
, and
Ma
,
C.
,
2015
, “
A Review of Flow Boiling Heat Transfer of Nanofluids
,”
Appl. Therm. Eng.
,
91
, pp.
1003
1017
.
6.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. M.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling of Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.
7.
Milanova
,
D.
, and
Kumar
,
R.
,
2008
, “
Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042401
.
8.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
265
274
.
9.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2008
, “
Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
,
130
(
4
), p.
044501
.
10.
Buongiorno
,
J.
, and
Hu
,
L.
,
2009
, “
Nanofluid Heat Transfer Enhancement for Nuclear Reactor Applications
,”
ASME
Paper No. MNHMT2009-18062.
11.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
12.
Kim
,
T. I.
,
Chang
,
W. J.
, and
Chang
,
S. H.
,
2011
, “
Flow Boiling CHF Enhancement Using Al2O3 Nanofluid and an Al2O3 Nanoparticle Deposited Tube
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2021
2025
.
13.
Tetreault-Friend
,
M.
,
Azizian
,
R.
,
Bucci
,
M.
,
McKrell
,
T.
,
Buongiorno
,
J.
,
Rubner
,
M.
, and
Cohen
,
R.
,
2016
, “
Critical Heat Flux Maxima Resulting From the Controlled Morphology of Nanoporous Hydrophilic Surface Layers
,”
Appl. Phys. Lett.
,
108
(
24
), p.
243102
.
14.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
,
2002
, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
Appl. Phys. Lett.
,
91
(
7
), pp.
4568
4572
.
15.
Pryazhnikov
,
M. I.
,
Minakov
,
A. V.
,
Rudyak
,
V. Y.
, and
Guzei
,
D. V.
,
2017
, “
Thermal Conductivity Measurements of Nanofluids
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1275
1282
.
16.
Nayak
,
A. K.
,
Singh
,
R. K.
, and
Kulkarni
,
P. P.
,
2010
, “
Measurement of Volumetric Thermal Expansion Coefficient of Various Nanofluids
,”
Tech. Phys. Lett.
,
36
(
8
), pp.
696
698
.
17.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
427
438
.
18.
Park
,
H. S.
,
Shiferaw
,
D.
,
Sehgal
,
B. R.
,
Kim
,
D. K.
, and
Muhammed
,
M.
,
2004
, “
Film Boiling Heat Transfer on a High Temperature Sphere in Nanofluid
,”
ASME
.
19.
Bang
,
I. C.
, and
Kim
,
J. H.
,
2011
, “
Rod-Type Quench Performance of Nano Fluids Towards Developments of Advanced PWR Nanofluids-Eng Ineered Safety Features
,”
International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21st Century
, Paper No. IAEA-CN-164-5S10.
20.
Dasgupta
,
A.
,
Chinchole
,
A.
,
Kulkarni
,
P. P.
,
Chandraker
,
D. K.
, and
Nayak
,
A. K.
,
2016
, “
Quenching of a Heated Rod: Physical Phenomena, Heat Transfer and Effect of Nano-Fluids
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122401
.
21.
Paul
,
G.
,
Das
,
P. K.
, and
Manna
,
I.
,
2016
, “
Assessment of the Process of Boiling Heat Transfer During Rewetting of a Vertical Tube Bottom Flooded by Alumina Nanofluid
,”
Int. J. Heat Mass Transfer
,
94
, pp.
390
402
.
22.
Bennett
,
A. W.
,
Hewitt
,
G. F.
,
Kearsey
,
H. A.
, and
Keeys
,
R. K. F.
,
1966
, “
The Wetting of Hot Surfaces by Water in a Steam Environment at High Pressure
,” Atomic Energy Research Establishment,
Harwell, UK
, Report No. AERE-R-5146.
23.
Kumar
,
M.
,
Mukhopadhyay
,
D.
,
Ghosh
,
A. K.
, and
Kumar
,
R.
,
2016
, “
Radial Jet Induced Rewetting Study for Heated Rod
,”
Exp. Therm. Fluid Sci.
,
79
, pp.
283
293
.
24.
Dasgupta
,
A.
,
Chandraker
,
D. K.
,
Nayak
,
A. K.
,
Kulkarni
,
P. P.
,
Chinchole
,
A.
, and
Rao
,
A. R.
,
2017
, “
Demonstration of Adequacy of Passive in-Bundle ECC Injection of AHWR
,”
Ann. Nucl. Energy
,
102
, pp.
11
22
.
25.
Chinchole
,
A. S.
,
Kulkarni
,
P. P.
, and
Nayak
,
A. K.
,
2016
, “
Experimental Investigation of Quenching Behavior of Zircaloy Rod in Accidental Condition of Nuclear Reactor With Water and Water Based Nanofluids
,”
Nanosystems: Phys., Chem., Math.
,
7
(
3
), pp.
528
533
.
26.
Moore
,
R. V.
, and
Holmes
,
J. E. R.
,
1968
, “
The SGHWR System
,”
British Nuclear Energy Society Conference on Steam Generating and Other Heavy Water Reactors
, Paper no. 1-14-16.
27.
Sinha
,
R. K.
, and
Kakodkar
,
A.
,
2006
, “
Design and Development of the AHWR-the Indian Thorium Fuelled Innovative Nuclear Reactor
,”
Nucl. Eng. Des.
,
236
(
7–8
), pp.
683
700
.
28.
Patil
,
N. D.
,
Das
,
P. K.
, and
Sahu
,
S. K.
,
2012
, “
An Experimental Assessment of Cooling of a 54-Rod Bundle by in-Bundle Injection
,”
Nucl. Eng. Des.
,
250
, pp.
500
511
.
29.
Kumar
,
M.
,
Mukhopadhyay
,
D.
,
Ghosh
,
A. K.
, and
Kumar
,
R.
,
2014
, “
Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle
,”
Sci. World J.
,
2014
, p.
589543
.
30.
Yeom
,
H.
,
Jo
,
H.
,
Johnson
,
G.
,
Sridharan
,
K.
, and
Corradini
,
M.
,
2018
, “
Transient Pool Boiling Heat Transfer of Oxidized and Roughened Zircaloy-4 Surfaces During Water Quenching
,”
Int. J. Heat Mass Transfer
,
120
, pp.
435
446
.
31.
Ali
,
H. M.
,
Ali
,
H.
,
Liaquat
,
H.
,
Maqsood
,
H. T.
,
Bin
., and
Nadir
,
M. A.
,
2015
, “
Experimental Investigation of Convective Heat Transfer Augmentation for Car Radiator Using ZnO-Water Nanofluids
,”
Energy
,
84
, pp.
317
324
.
32.
Rafati
,
M.
,
Hamidi
,
A. A.
, and
Niaser
,
M. S.
,
2012
, “
Application of Nanofluids in Computer Cooling Systems (Heat Transfer Performance of Nanofluids)
,”
Appl. Therm. Eng.
,
45-46
, pp.
9
14
.
33.
Siddiqui
,
A. M.
,
Arshad
,
W.
,
Ali
,
H. M.
,
Ali
,
M.
, and
Nasir
,
M. A.
,
2017
, “
Evaluation of Nanofluids Performance for Simulated Microprocessor
,”
Therm. Sci.
,
21
(
5
), pp.
2227
2236
.
34.
Anushree
,
C.
, and
Philip
,
J.
,
2016
, “
Assessment of Long Term Stability of Aqueous Nanofluids Using Different Experimental Techniques
,”
J. Mol. Liq.
,
222
, pp.
350
358
.
You do not currently have access to this content.