This paper presents the experimental and theoretical analysis of a micro heat exchanger designed for the waste heat recovery from a high concentration photovoltaic (HCPV) system. A test bench was built to analyze the thermal behavior of a heat exchanger targeted to work in a similar condition of an existing HCPV panel. A high power heater was encapsulated inside a copper cartridge, covered by thermal insulation, leading to dissipated heat fluxes around 0.6 MW/m2, representative of the heat flux over the solar cell within the HCPV module. The experimental campaign employed water as the coolant fluid and was performed for three different mass flow rates. An infrared camera was used to nonintrusively measure the temperature field over the micro heat exchanger external surface, while thermocouples were placed at the contact between the heat exchanger and the heater, and at the water inlet and outlet ports. In the theoretical analysis, a hybrid numerical–analytical treatment is implemented, combining the numerical simulation through the comsolmultiphysics finite elements code for the micro heat exchanger, and the analytical solution of a lumped-differential formulation for the electrical heater cartridge, offering a substantial computational cost reduction. Such computational simulations of the three-dimensional conjugated heat transfer problem were critically compared to the experimental results and also permitted to inspect the adequacy of a theoretical correlation based on a simplified prescribed heat flux model without conjugation effects. It has been concluded that the conjugated heat transfer problem modeling should be adopted in future design and optimization tasks. The analysis demonstrates the enhanced heat transfer achieved by the microthermal system and confirms the potential in reusing the recovered heat from HCPV systems in a secondary process.

References

References
1.
Guerrieri
,
D. C.
, and
Naveira-Cotta
,
C. P.
,
2014
, “
Experimental and Theoretical Analysis of a Microchannel Heat Exchanger for High Concentration Photovoltaic Cells
,”
ICCHMT International Symposium on Convective Heat and Mass Transfer
(
CONV-14
), Kusadasi, Turkey, June 8–13, pp. 1–12https://www.researchgate.net/publication/269390494_EXPERIMENTAL_AND_THEORETICAL_ANALYSIS_OF_A_MICROCHANNEL_HEAT_EXCHANGER_FOR_HIGH_CONCENTRATION_PHOTOVOLTAIC_CELLS.
2.
Correa
,
M.
,
Guerrieri
,
C. D.
,
Naveira-Cotta
,
C. P.
, and
Colman
,
J.
,
2013
, “
Design and Manufacture of Microchannel Heat Sinks for High Concentration Photovoltaic Cells
,”
22th International Congress of Mechanical Engineering (COBEM)
, Ribeirão Preto, SP, Brazil, Nov. 3–7, pp. 1–12.
3.
Ohadi
,
M. M.
,
Choo
,
K.
,
Dessiatoun
,
S. V.
, and
Cetegen
,
E.
,
2012
,
Next Generation Microchannel Heat Exchangers
,
Springer
,
New York
.
4.
Ameel
,
T. A.
,
Warrington
,
R. O.
,
Wegeng
,
R. S.
, and
Drost
,
M. K.
,
1997
, “
Miniaturization Technologies Applied to Energy Systems
,”
Energy Convers. Manage.
,
38
(
10–13
), pp.
969
982
.
5.
Khan
,
M. G.
, and
Fartaj
,
A.
,
2011
, “
A Review on Microchannel Heat Exchangers and Potential Applications
,”
Int. J. Energy Res.
,
35
(
7
), pp.
553
582
.
6.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips
,”
ASME J. Heat Transfer.
,
132
(
8
), p.
081402
.
7.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Dessiatoun
,
S. V.
,
Al-Hajri
,
E.
, and
Ohadi
,
M. M.
,
2015
, “
Numerical Modeling and Thermal Optimization of a Single-Phase Flow Manifold-Microchannel Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
81
, pp.
478
489
.
8.
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Renfer
,
A.
,
Tiwari
,
M. K.
,
Cotta
,
R. M.
, and
Poulikakos
,
D.
,
2015
, “
Analysis of Conjugated Heat Transfer in Micro-Heat Exchangers Via Integral Transforms and Non-Intrusive Optical Techniques
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
6
), pp.
1444
1462
.
9.
Zimmermann
,
S.
,
Helmers
,
H.
,
Manish
,
T. K.
,
Paredes
,
S.
,
Michel
,
B.
,
Wiesenfarth
,
M.
,
Bett
,
A. W.
, and
Poulikakos
,
D.
,
2015
, “
A High-Efficiency Hybrid High-Concentration Photovoltaic System
,”
Int. J. Heat Mass Transfer
,
89
, pp.
514
521
.
10.
Rahimi
,
M.
,
Asadi
,
M.
,
Karami
,
N.
, and
Karimi
,
E.
,
2015
, “
A Comparative Study on Using Single and Multi Header Microchannels in a Hybrid PV Cell Cooling
,”
Energy Convers. Manage.
,
101
,
pp. 1
8
.
11.
Besheer
,
A. H.
,
Smyth
,
M.
,
Zacharopoulos
,
A.
,
Mondol
,
J.
, and
Pugsley
,
A.
,
2016
, “
Review on Recent Approaches for Hybrid PV/T Solar Technology
,”
Int. J. Energy Res.
,
40
(
15
), pp.
2038
2053
.
12.
Radwana
,
A.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2016
, “
Analysis and Simulation of Concentrating Photovoltaic Systems With a Microchannel Heat Sink
,”
Sol. Energy
,
136
, pp.
35
48
.
13.
Xu
,
Z.
, and
Kleinstreuer
,
C.
,
2014
, “
Computational Analysis of Nanofluid Cooling of High Concentration Photovoltaic Cells
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
3
), p.
031009
.
14.
Micheli
,
L.
,
Sarmah
,
N.
,
Luo
,
X.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2013
, “
Opportunities and Challenges in Micro-and Nano-Technologies for Concentrating Photovoltaic Cooling: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
595
610
.
15.
Phelan
,
P.
,
Otanicar
,
T.
,
Taylor
,
R.
, and
Tyagi
,
H.
,
2013
, “
Trends and Opportunities in Direct-Absorption Solar Thermal Collectors
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021003
.
16.
Costa Junior
,
J. M.
,
Naveira-Cotta
,
C. P.
,
Nunes
,
J.
, and
Tostado
,
C. P.
,
2015
, “
Design, Fabrication and Characterization of Micro-Reactor for Biodiesel Synthesis
,”
Heat Pipe Sci. Technol.
,
6
(
3–4
), pp.
135
153
.
17.
Pontes
,
P. C.
,
Chen
,
K.
,
Naveira-Cotta
,
C. P.
,
Costa Junior
,
J. M.
,
Tostado
,
C. P.
, and
Quaresma
,
J. N. N.
,
2016
, “
Mass Transfer Simulation of BiodieselSynthesis in Microreactors
,”
Comput. Chem. Eng. J.
,
93
, pp.
36
51
.
18.
Pontes
,
P. C.
,
Naveira-Cotta
,
C. P.
, and
Quaresma
,
J. N. N.
,
2017
, “
Three-Dimensional Reaction-Convection-Diffusion Analysis With Temperature Influence for Biodiesel Synthesis in Micro-Reactors
,”
Int. J. Therm. Sci.
,
118
, pp.
104
122
.
19.
Little
,
A. B.
, and
Garimella
,
S.
,
2012
, “
Waste Heat Recovery in Data Centers Using Sorption Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
2
), p.
021007
.
20.
Herold
,
K. E.
, and
Radermacher
,
R.
,
2002
, “
Integrated Power and Cooling Systems for Data Centers
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
808
811
.
21.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Micro-Channels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
22.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer.
,
47
(
17–18
), pp.
3993
4004
.
23.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
,
2005
, “
Heat Transfer in Microchannels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5580
5601
.
24.
Nunes
,
J. S.
,
Cotta
,
R. M.
,
Avelino
,
M.
, and
Kakaç
,
S.
,
2010
, “
Conjugated Heat Transfer in Micro-Channels
,”
Microfluidics Based Microsystems: Fundamentals and Applications
(NATO Science for Peace and Security Series A: Chemistry and Biology, Vol. 1),
S.
Kakaç
,
B.
Kosoy
, and
Pramuanjaroenkij
, eds.,
Springer
, New York, pp.
61
82
.
25.
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2014
, “
Theoretical-Experimental Analysis of Conjugated Heat Transfer Nanocomposite Heat Spreaders with Multiple Micro-Channels
,”
Int. J. Heat Mass Transfer
,
74
, pp.
306
318
.
26.
Cotta
,
R. M.
,
Knupp
,
D. C.
, and
Naveira-Cotta
,
C. P.
,
2016
,
Analytical Heat and Fluid Flow in Microchannels and Microsystems
(Mechanical Eng. Series),
Springer-Verlag
, New York.
27.
Aparecido
,
J. B.
, and
Cotta
,
R. M.
,
1989
, “
Improved One-Dimensional Fin Solutions
,”
Heat Transfer Eng.
,
11
(
1
), pp.
49
59
.
28.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
1997
,
Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation
,
Wiley
,
New York
.
29.
Alves
,
L. S. B.
,
Sphaier
,
L. A.
, and
Cotta
,
R. M.
,
2000
, “
Error Analysis of Mixed Lumped-Differential Formulations in Diffusion Problems
,”
Hybrid Methods Eng.
,
2
(
4
), pp.
409
435
.
30.
Naveira-Cotta
,
C. P.
,
Lachi
,
M.
,
Rebay
,
M.
, and
Cotta
,
R. M.
,
2010
, “
Experiments and Simulations in Transient Conjugated Conduction-Convection-Radiation
,”
Heat Transfer Res.
,
43
(
3
), pp.
209
231
.
31.
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Ayres
,
J. V. C.
,
Cotta
,
R. M.
, and
Orlande
,
H. R. B.
,
2012
, “Theoretical-Experimental Analysis of Heat Transfer in Nonhomogeneous Solids Via Improved Lumped Formulation, Integral Transforms and Infrared Thermography”, Int.
J. Therm. Sci.
,
62
, pp.
71
84
.
32.
COMSOL Multiphysics,
2015
, “
COMSOL Multiphysics User's Guide
,” Version 4.4, COMSOL Multiphysics: Modeling, Finite Element Analysis and Engineering Simulation Software.
33.
Chávez Toro
,
C. A.
,
2014
, “
Heat Transfer and Pressure Drop of Hydro- Carbon Refrigerants During Flow Boiling in a Microchannel Array
,” Ph.D. thesis, University of São Paulo, São Carlos, SP, Brazil.
34.
Siva
,
V. M.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2013
, “
A Numerical Study of Flow and Temperature Maldistribution in a Parallel Microchannel System for Heat Removal in Microelectronic Devices
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
4
), p.
041008
.
35.
Commenge
,
J. M.
,
Falk
,
L.
,
Corriou
,
J. P.
, and
Matlosz
,
M.
,
2002
, “
Optimial Design for Flow Uniformity in Microchannel Reactors
,”
AIChE J.
,
48
(
2
), pp.
345
358
.
36.
Wolfram
,
S.
,
2015
,
The Mathematica Book
,
Wolfram Media
, Cambridge, UK.
37.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2012
, “
Numerical Investigation of Heat Transfer in Rectangular Microchannels Under H2 Boundary Condition During Developing and Fully Developed Laminar Flow
,”
ASME J. Heat Transfer.
,
134
(
2
), p.
0209111
.
You do not currently have access to this content.