In this paper, the problem of air cooling and temperature nonuniformity at the cell and pack level is addressed. Passive techniques are developed by integrating jet inlets and vortex generators (VGs) in a simple battery pack with the goal to achieve an effective cooling, and the desired temperature uniformity at the cell and pack level to less than 5 °C, without an increase in the required mass flow and power requirements. Moreover, various configurations of the developed techniques are assessed and compared. In order to achieve the objectives, computational fluid dynamics (CFD) is used to conduct numerical studies on the battery packs. The results concluded that by adding both the delta winglet (DW) vortex generator arrays and jet inlet arrays in the same configuration, improvements in temperature reduction and uniformity can be achieved. The results showed that the maximum temperature of the battery pack was reduced by ∼6% and the temperature uniformity at the pack level was increased by 24%. Additionally, a ∼37% improvement in the temperature uniformity at cell level was achieved.

References

References
1.
EPA
,
2018
, “
Sources of Greenhouse Gas Emissions
,” European Psychiatric Association, Washington, DC, accessed Sept. 09, 2018, https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
2.
Omar
,
N.
,
Monem
,
M. A.
,
Firouz
,
Y.
,
Salminen
,
J.
,
Smekens
,
J.
,
Hegazy
,
O.
,
Gaulous
,
H.
,
Mulder
,
G.
,
Van den Bossche
,
P.
,
Coosemans
,
T.
, and
Van Mierlo
,
J.
,
2014
, “
Lithium Iron Phosphate Based Battery–Assessment of the Aging Parameters and Development of Cycle Life Model
,”
Appl. Energy
,
113
, pp.
1575
1585
.
3.
Li
,
X.
,
He
,
F.
, and
Ma
,
L.
,
2013
, “
Thermal Management of Cylindrical Batteries Investigated Using Wind Tunnel Testing and Computational Fluid Dynamics Simulation
,”
J. Power Sources
,
238
, pp.
395
402
.
4.
Yang
,
T.
,
Yang
,
N.
,
Zhang
,
X.
, and
Li
,
G.
,
2016
, “
Investigation of the Thermal Performance of Axial-Flow Air Cooling for the Lithium-Ion Battery Pack
,”
Int. J. Therm. Sci.
,
108
, pp.
132
144
.
5.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
.
6.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
.
7.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
.
8.
Cho
,
G. Y.
,
Choi
,
J. W.
,
Park
,
J. H.
, and
Cha
,
S. W.
,
2014
, “
Transient Modeling and Validation of Lithium Ion Battery Pack With Air Cooled Thermal Management System for Electric Vehicles
,”
Int. J. Automot. Technol.
,
15
(
5
), p.
795
.
9.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
.
10.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.
11.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
12.
Liu
,
Y. P.
,
Ouyang
,
C. Z.
,
Jiang
,
Q. B.
, and
Liang
,
B.
,
2015
, “
Design and Parametric Optimization of Thermal Management of Lithium-Ion Battery Module With Reciprocating Air-Flow
,”
J. Cent. South Univ.
,
22
(
10
), pp.
3970
3976
.
13.
He
,
J.
,
Liu
,
L.
, and
Jacobi
,
A. M.
,
2014
, “
Experimental and Numerical Investigation of Surface Convection Enhancement by a V-Formation Delta-Winglet Array in a Developing Channel Flow
,”
ASHRAE Trans.
,
120
(
Pt. 2
), pp. 107–117.
14.
Althaher
,
M. A.
,
Abdul-Rassol
,
A. A.
,
Ahmed
,
H. E.
, and
Mohammed
,
H. A.
,
2012
, “
Turbulent Heat Transfer Enhancement in a Triangular Duct Using Delta-Winglet Vortex Generators
,”
Heat Transfer-Asian Res.
,
41
(
1
), pp.
43
62
.
15.
Chu
,
P.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Three-Dimensional Numerical Study of Flow and Heat Transfer Enhancement Using Vortex Generators in Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
,
131
(
9
), pp.
1
9
.
16.
Eaton
,
J. K.
,
1994
, “
The Effect of Embedded Longitudinal Vortex Arrays on Turbulent Boundary Layer Heat Transfer
,”
ASME J. Heat Transfer
,
116
(
4
), p.
871
.
17.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M. M.
,
1994
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
880
885
.
18.
Wang
,
C. C.
,
Lo
,
J.
,
Lin
,
Y. T.
, and
Wei
,
C. S.
,
2002
, “
Flow Visualization of Annular and Delta Winlet Vortex Generators in Fin-and-Tube Heat Exchanger Application
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3803
3815
.
19.
Fiebig
,
M.
,
Kallweit
,
P.
, and
Mitra
,
N. K.
,
1986
, “
Wing Type Vortex Generators for Heat Transfer Enhancement
,”
Heat Transfer
,
1
(
986
), p.
909
.
20.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.
21.
Fiebig
,
M.
,
1995
, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
376
388
.
22.
Biswas
,
G.
,
Torii
,
K.
,
Fujii
,
D.
, and
Nishino
,
K.
,
1996
, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
39
(
16
), pp.
3441
3451
.
23.
Jain
,
A.
,
Biswas
,
G.
, and
Maurya
,
D.
,
2003
, “
Winglet-Type Vortex Generators With Common-Flow-Up Configuration for Fin-Tube Heat Exchangers
,”
Numer. Heat Transfer: Part A
,
43
(
2
), pp.
201
219
.
24.
Tian
,
L. T.
,
He
,
Y. L.
,
Lei
,
Y. G.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Fluid Flow and Heat Transfer in a Flat-Plate Channel With Longitudinal Vortex Generators by Applying Field Synergy Principle Analysis
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
111
120
.
25.
Zhang
,
L.
,
Shang
,
B.
,
Meng
,
H.
,
Li
,
Y.
,
Wang
,
C.
,
Gong
,
B.
, and
Wu
,
J.
,
2016
, “
Effects of the Arrangement of Triangle-Winglet-Pair Vortex Generators on Heat Transfer Performance of the Shell Side of a Double-Pipe Heat Exchanger Enhanced by Helical Fins
,”
Heat Mass Transfer
,
53
(
1
), pp.
127
139
.
26.
Lei
,
Y. G.
,
He
,
Y. L.
,
Tian
,
L. T.
,
Chu
,
P.
, and
Tao
,
W. Q.
,
2010
, “
Hydrodynamics and Heat Transfer Characteristics of a Novel Heat Exchanger With Delta-Winglet Vortex Generators
,”
Chem. Eng. Sci.
,
65
(
5
), pp.
1551
1562
.
27.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
(
8
), p.
1157
.
28.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Development and Analysis of a Technique to Improve Air-Cooling and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
351
363
.
29.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Experimental and Numerical Studies on Air Cooling and Temperature Uniformity in a Battery Pack
,”
Int. J. Energy Res.
,
42
(
6
), pp.
2246
2262
.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
31.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
32.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Minkowycz
,
W. J.
,
2009
, “
Flow Separation in a Diverging Conical Duct: Effect of Reynolds Number and Divergence Angle
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3079
3083
.
33.
Lee
,
G. G.
,
Allan
,
W. D.
, and
Boulama
,
K. G.
,
2013
, “
Flow and Performance Characteristics of an Allison 250 Gas Turbine S-Shaped Diffuser: Effects of Geometry Variations
,”
Int. J. Heat Fluid Flow
,
42
, pp.
151
163
.
34.
He
,
F.
,
Wang
,
H.
, and
Ma
,
L.
,
2015
, “
Experimental Demonstration of Active Thermal Control of a Battery Module Consisting of Multiple Li-Ion Cells
,”
Int. J. Heat Mass Transfer
,
91
, pp.
630
639
.
35.
Kuper
,
C.
,
Hoh
,
M.
,
Houchin-Miller
,
G.
, and
Fuhr
,
J.
,
2009
, “
Thermal Management of Hybrid Vehicle Battery Systems
,” EVS24,
Stavanger
,
Norway
, pp.
1
10
.
36.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
You do not currently have access to this content.