Abstract

The scope for the heat transfer enhancement in the tubular heat exchanger is high due to its unique property of having two separate convective heat transfer coefficients. The variation of diameter and annular space has a direct effect on the value of convective heat transfer coefficients due to their inverse relation. Thus, the strong emphasis must be given on the influence of diameter and annular space on the thermal characteristics of the tubular heat exchanger. In this numerical analysis, peculiarities in the improvement of the performance parameters are studied with the variation in the value of inlet velocities of the fluids (cold and hot), inner pipe diameter, and annular space for the combination of dimensional range such as miniscale and microscale range. The inner tube diameter is observed to be sensitive to the improvement in the performance parameter. The growth in the performance parameter of the tubular micro heat exchanger is found to be higher when both the values of diameter and annular space are in the microscale range.

References

1.
Tuckerman
,
D. B.
,
1984
, “
Heat Transfer Microstructures for Integrated Circuits
,”
Ph.D. thesis
, Stanford University, Stanford, CA. http://www.dtic.mil/dtic/tr/fulltext/u2/a344846.pdf
2.
Wang
,
B. X.
, and
Peng
,
X. F.
,
1994
, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
73
82
.
3.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1995
, “
The Effect of Thermofluid and Geometrical Parameters on Convection of Liquids Through Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
38
(
4
), pp.
755
758
.
4.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.
5.
Sahar
,
A. M.
,
Wissink
,
J.
,
Mahmoud
,
M. M.
,
Karayiannis
,
T. G.
, and
Ashrul Ishak
,
M. S.
,
2017
, “
Effect of Hydraulic Diameter and Aspect Ratio on Single Phase Flow and Heat Transfer in a Rectangular Microchannel
,”
Appl. Therm. Eng.
,
115
(
1
), pp.
793
814
.
6.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
,
2002
, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
765
773
.
7.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2012
, “
Numerical Investigation of Heat Transfer in Rectangular Microchannels Under H2 Boundary Condition During Developing and Fully Developed Laminar Flow
,”
ASME J. Heat Transfer
,
134
(
2
), p. 020911.
8.
Rachkovskij
,
D. A.
,
Kussul
,
E. M.
, and
Talayev
,
S. A.
,
1998
, “
Heat Exchange in Short Micro Tubes and Micro Heat Exchangers With Low Hydraulic Losses
,”
Microsyst. Technol.
,
4
(
3
), pp.
151
158
.
9.
Brandner
,
J. J.
,
Anurjew
,
E.
,
Bohn
,
L.
,
Hansjosten
,
E.
,
Henning
,
T.
,
Schygulla
,
U.
,
Wenka
,
A.
, and
Schubert
,
K.
,
2006
, “
Concepts and Realization of Microstructure Heat Exchangers for Enhanced Heat Transfer
,”
Exp. Therm. Fluid Science
,
30
(
8
), pp.
801
809
.
10.
Foli
,
K.
,
Okaba
,
T.
,
Olhofer
,
M.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2006
, “
Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-Objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1090
1099
.
11.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2005
, “
Convective Heat Transfer Coefficients in Concentric Annuli
,”
Heat Transfer Eng.
,
26
(
2
), pp.
38
44
.
12.
Hasan
,
M. I.
,
Rageb
,
A. A.
,
Yaghoubi
,
M.
, and
Homayoni
,
H.
,
2009
, “
Influence of Channel Geometry on the Performance of a Counter Flow Microchannel Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1607
1618
.
13.
Tharkar
,
A. D.
, and
Mahulikar
,
S. P.
,
2018
, “
The Mean Temperature Difference Method for Micro Heat Exchanger Analysis Considering Property Variation
,”
Heat Transfer Eng.
(in press).
14.
Wong
,
K. L.
,
Ke
,
M. T.
, and
Ku
,
S. S.
,
2009
, “
The Log Mean Heat Transfer Rate Method of Heat Exchanger Considering the Influence of Heat Radiation
,”
Energy Convers. Manage.
,
50
(
11
), pp.
2693
2698
.
15.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2005
, “
Theoretical Investigation of Scaling Effects From Macro-to-Microscale Convection Due to Variations in Incompressible Fluid Properties
,”
Appl. Phys. Lett.
,
86
(
1
), pp.
1
3
.
You do not currently have access to this content.