In recent years, a primary concern in the development of electronic technology is high heat dissipation of power devices. The advantages of unique thermal physical properties of graphite foam raise up the possibility of developing pool boiling system with better heat transfer efficiency. A compact thermosyphon was developed with graphite foam insertions to explore how different parameters affect boiling performance. Heater wall temperature, superheat, departure frequency of bubbles, and thermal resistance of the system were analyzed. The results indicated that the boiling performance is affected significantly by thermal conductivity and pore diameter of graphite foam. A proposed heat transfer empirical correlation reflecting the relations between graphite foam micro structures and pool boiling performance of Novec7100 was developed in this paper.

References

References
1.
Williams
,
Z. A.
, and
Roux
,
J. A.
,
2006
, “
Graphite Foam Thermal Management of a High Packing Density Array of Power Amplifiers
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
456
465
.
2.
Sedeh
,
M. M.
, and
Khodadadi
,
J. M.
,
2013
, “
Thermal Conductivity Improvement of Phase Change Materials/Graphite Foam Composites
,”
Carbon
,
60
, pp.
117
128
.
3.
Jin
,
L. W.
,
Leong
,
K. C.
, and
Pranoto
,
I.
,
2011
, “
Saturated Pool Boiling Heat Transfer From Highly Conductive Graphite Foams
,”
Appl. Therm. Eng.
,
31
(
14
), pp.
2685
2693
.
4.
Zhao
,
C. Y.
, and
Wu
,
Z. G.
,
2011
, “
Heat Transfer Enhancement of High Temperature Thermal Energy Storage Using Metal Foams and Expanded Graphite
,”
Solar Energy Mater. Solar Cells
,
95
(
2
), pp.
636
643
.
5.
Lafdi
,
K.
,
Mesalhy
,
O.
, and
Elgafy
,
A.
,
2008
, “
Graphite Foams Infiltrated With Phase Change Materials as Alternative Materials for Space and Terrestrial Thermal Energy Storage Applications
,”
Carbon
,
46
(
1
), pp.
159
168
.
6.
Klett
,
J.
,
Hardy
,
R.
, and
Romine
,
E.
,
2000
, “
High-Thermal-Conductivity, Mesophase-Pitch-Derived Carbon Foams: Effect of Precursor on Structure and Properties
,”
Carbon
,
38
(
7
), pp.
953
973
.
7.
Pranoto
,
I.
,
Leong
,
K. C.
, and
Jin
,
L. W.
,
2012
, “
The Role of Graphite Foam Pore Structure on Saturated Pool Boiling Enhancement
,”
Appl. Therm. Eng.
,
42
, pp.
163
172
.
8.
Gallego
,
N. C.
, and
Klett
,
J. W.
,
2003
, “
Carbon Foams for Thermal Management
,”
Carbon
,
41
(
7
), pp.
1461
1466
.
9.
Straatman
,
A. G.
,
Gallego
,
N. C.
, and
Thompson
,
B. E.
,
2006
, “
Thermal Characterization of Porous Carbon Foam-Convection in Parallel Flow
,”
Int. J. Heat Mass Transfer
,
49
(
11
), pp.
1991
1998
.
10.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
509
516
.
11.
Coursey
,
J. S.
,
Kim
,
J.
, and
Boudreaux
,
P. J.
,
2005
, “
Performance of Graphite Foam Evaporator for Use in Thermal Management
,”
ASME J. Electron. Packag.
,
127
(
2
), pp.
127
134
.
12.
Gandikota
,
V.
, and
Fleischer
,
A. S.
,
2009
, “
Experimental Investigation of the Thermal Performance of Graphite Foam for Evaporator Enhancement in Both Pool Boiling and an FC-72 Thermosyphon
,”
Heat Transfer Eng.
,
30
(
8
), pp.
643
648
.
13.
Moghaddam
,
S.
,
Ohadi
,
M.
, and
Qi
,
J.
,
2003
,
Pool Boiling of Water and FC-72 on Copper and Graphite Foams
,
American Society of Mechanical Engineers
, New York, pp.
675
680
.
14.
Jin
,
L.
,
Indro
,
P.
,
Kai
,
C. L.
, and
Chai
,
J. C.
,
2010
, “
Parametric Study of Pool Boiling From Porous Graphite Foams in Dielectric Liquids
,”
Third International Conference on Thermal Issues in Emerging Technologies Theory and Applications
, pp.
19
25
.
15.
Coursey
,
J. S.
,
Roh
,
H.
, and
Kim
,
J.
,
2002
,
Graphite Foam Thermosyphon Evaporator Performance: Parametric Investigation of the Effects of Working Fluid, Liquid Level, and Chamber Pressure
,
American Society of Mechanical Engineers
, New York, pp.
165
170
.
16.
Ghiu
,
C. D.
, and
Joshi
,
Y. K.
,
2005
, “
Visualization Study of Pool Boiling From Thin Confined Enhanced Structures
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4287
4299
.
17.
Nimkar
,
N. M.
,
Bhavnani
,
S. H.
, and
Jagger
,
R. C.
,
2006
, “
Effect of Nucleation Site Spacing on the Pool Boiling Characteristics of a Structure Surface
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2829
2839
.
18.
White
,
S. B.
,
Gallego
,
N. C.
,
Johnson
,
D. D.
, and
Pipe
,
K.
,
2004
, “
Graphite Foam for Cooling of Automotive Power Electronics
,”
IEEE
Power Electronics in Transportation Conference
, Novi, MI, Oct. 21–22, pp.
61
65
.
19.
Yu
,
Q. J.
,
Straatman
,
A. G.
, and
Thompson
,
B. E.
,
2006
, “
Carbon-Foam Finned Tubes in Air-Water Heat Exchangers
,”
Appl. Therm. Eng.
,
26
(2–3), pp. 131–
143
.
20.
Lu
,
M.
,
Mok
,
L.
, and
Bezama
,
R. J.
,
2006
, “
Graphite Foam based Vapor Chamber for Chip Heat Spreading
,”
ASME J. Electron. Packag.
,
104
(5), pp.
427
431
.
21.
Leong
,
K. C.
, and
Jin
,
L. W.
,
2008
, “
Study of Highly Conductive Graphite Foams in Thermal Management Applications
,”
Adv. Eng. Mater.
,
32
, pp.
338
345
.
22.
Ramaswamy
,
C.
,
Joshi
,
Y. K.
,
Nakayama
,
W.
, and
Johnson, W. B.
,
2000
, “
Combined Effects of Sub-Cooling and Operating Pressure on the Performance of a Two-Chamber Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
1
), pp.
61
69
.
23.
Rohsenow
,
W. M.
,
1951
,
A Method of Correlating heat Transfer Data for Surface Boiling of Liquids
,
MIT Division of Industrial Cooporation
,
Cambridge, MA
.
24.
Chai
,
Y.
,
Yang
,
X.
,
Meng
,
X.
,
Zhang
,
Q.
, and
Jin
,
L.
,
2016
,
Study of Micro-Structure Based Effective Thermal Conductivity of Graphite Foam
,
American Society of Mechanical Engineers
, Singapore.
25.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer—II: Assessment of Prediction Methods
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5045
5057
.
You do not currently have access to this content.