The dry-low-NOx (DLN) micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently, the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The nonpremixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 vol %) micromix (MMX) combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel MMX combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas, the evaluated dual-fuel MMX prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.

References

References
1.
Moriarty
,
P.
, and
Honnery
,
D.
,
2009
, “
Hydrogen's Role in an Uncertain Energy Future
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
31
39
.
2.
Veziroglu
,
T. N.
,
2000
, “
Quarter Century of Hydrogen Movement 1974-2000
,”
Int. J. Hydrogen Energy
,
25
(
12
), pp.
1143
1150
.
3.
Midilli
,
A.
,
Ay
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2005
, “
On Hydrogen and Hydrogen Energy Strategies—I: Current Status and Needs
,”
Renewable Sustainable Energy Rev.
,
9
(
3
), pp.
255
271
.
4.
Midilli
,
A.
,
Ay
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2005
, “
On Hydrogen and Hydrogen Energy Strategies—II: Future Projections Affecting Global Stability and Unrest
,”
Renewable Sustainable Energy Rev.
,
9
(
3
), pp.
273
287
.
5.
Solomon
,
B. D.
, and
Banerjee
,
A.
,
2006
, “
A Global Survey of Hydrogen Energy Research, Development and Policy
,”
Energy Policy
,
34
(
7
), pp.
781
792
.
6.
Mason
,
J. E.
,
2007
, “
World Energy Analysis: H2 Now or Later?
,”
Energy Policy
,
35
(
2
), pp.
1315
1329
.
7.
Zerta
,
M.
,
Schmidt
,
P. R.
,
Stiller
,
C.
, and
Landinger
,
H.
,
2008
, “
Alternative World Energy Outlook (AWEO) and the Role of Hydrogen in a Changing Energy Landscape: 2nd World Congress of Young Scientists on Hydrogen Energy Systems
,”
Int. J. Hydrogen Energy
,
33
(
12
), pp.
3021
3025
.
8.
Jaeger
,
H.
,
2007
, “
Hydrogen-Fired Gas Turbine is Key to the Future of IGCC
,” Gas Turbine World, pp.
29
35
.
9.
Wu
,
J.
,
Brown
,
P.
,
Diakunchak
,
I. S.
,
Gulati
,
A.
,
Lenze
,
M.
, and
Koestlin
,
B.
,
2007
, “
Advanced Gas Turbine Combustion System Development for High Hydrogen Syngas Fuels
,”
ASME
Paper No. GT2007-28337.
10.
Gersdoff
,
K. V.
, and
Grasmann
,
K.
,
1981
,
Flugmotoren und Strahltriebwerke
,
Die deutsche Luftfahrt, Bernard & Graefe Verlag
,
München, Germany
.
11.
Mulready
,
R. C.
,
1964
,
Liquid Hydrogen Engines, Technology and Uses of Liquid Hydrogen
,
Pergamon Press
,
Oxford, UK
, pp.
149
170
.
12.
Conrad
,
E. W.
,
1979
, “
Turbine Engine Altitude Chamber and Flight Testing With Liquid Hydrogen
,”
Hydrogen in Air Transportation, International DGLR/DFVLR-Symposium
, Stuttgart, Germany, Sept. 11–14. https://ntrs.nasa.gov/search.jsp?R=19800025864
13.
Friedman
,
R.
,
Norgren
,
C. T.
, and
Jones
,
R. E.
,
1956
, “
Performance of a Short Turbojet Combustor With Hydrogen Fuel in a Quarter-Annulus Duct and Comparison With Performance in a Full-Scale Engine
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA RM E56D16.
14.
Sosounov
,
V.
, and
Orlov
,
V.
,
1990
, “
Experimental Turbofan Using Liquid Hydrogen and Liquid Natural Gas as Fuel
,”
AIAA
Paper No. 90-2421.
15.
Svensson
,
F.
, and
Singh
,
R.
,
2004
, “
Effects of Using Hydrogen on Aero Gas Turbine Pollutant Emissions, Performance and Design
,”
ASME
Paper No. GT 2004-53349.
16.
Svensson
,
F.
, and
Singh
,
R.
,
2005
, “
Design of Hydrogen-Fueled Aero Gas Turbines for Low Environmental Impact
,”
17th International Symposium on Air Breathing Engines
(ISABE), Munich, Germany, Sept. 4–9.
17.
Shum
,
F.
, and
Ziemann
,
J.
,
1996
, “
Potential Use of Hydrogen in Air Propulsion
,” Euro-Québec Hydro-Hydrogen Pilot Project (EQHHPP), European Union, Brussels, Belgium, Contract No. 4541-91-11 EL ISP PC.
18.
Westenberger
,
A.
,
2003
, “
Liquid Hydrogen Fueled Aircraft—System Analysis
,” CRYOPLANE, The European Commission, Brussels, Belgium, Report No. GRD1-1999-10014.
19.
Dahl
,
G.
, and
Suttrop
,
F.
,
2001
, “
Combustion Chamber and Emissions, Review of Proposed Hydrogen Combustors, Benefits and Drawbacks
,” CRYOPLANE Project, Task Technical Report No. 4.4-4.
20.
Lieuwen
,
T.
,
Yang
,
V.
, and
Yetter
,
R.
,
2010
,
Synthesis Gas Combustion: Fundamentals and Applications
,
CRC Press, Taylor & Francis
, Boca Raton, FL.
21.
Ordorica-Garcia
,
G.
,
Douglas
,
P.
,
Croiset
,
E.
, and
Zheng
,
L.
,
2006
, “
Techno-Economic Evaluation of IGCC Power Plants for CO2 Avoidance
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2250
2259
.
22.
Damen
,
K.
,
van Troost
,
M.
,
Faaij
,
A.
, and
Turkenburg
,
W.
,
2006
, “
A Comparison of Electricity and Hydrogen Production Systems With CO2 Capture and Storage—Part A: Review and Selection of Promising Conversion and Capture Technologies
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
215
246
.
23.
Damen
,
K.
,
van Troost
,
M.
,
Faaij
,
A.
, and
Turkenburg
,
W.
,
2007
, “
A Comparison of Electricity and Hydrogen Production Systems With CO2 Capture and Storage—Part B: Chain Analysis of Promising CCS Options
,”
Prog. Energy Combust. Sci.
,
33
(
6
), pp.
580
609
.
24.
Davison
,
J.
,
2009
, “
Electricity Systems With Near-Zero Emissions of CO2 Based on Wind Energy and Coal Gasification With CCS and Hydrogen Storage
,”
Int. J. Greenhouse Gas Control
,
3
(
6
), pp.
683
692
.
25.
Gräbner
,
M.
,
von Morstein
,
O.
,
Rappold
,
D.
,
Günster
,
W.
,
Beysel
,
G.
, and
Meyer
,
B.
,
2010
, “
Constructability Study on a German Reference IGCC Power Plant With and Without CO2-Capture for Hard Coal and Lignite
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2179
2187
.
26.
Jones
,
R. M.
, and
Shilling
,
N. Z.
,
1993
, “IGCC Gas Turbines for Refinery Applications,”
GE Power Systems
,
New York
, Report No. GER-41219.
27.
Gadde
,
S.
,
Wu
,
J.
,
Gulati
,
A.
,
McQuiggan
,
G.
,
Köstlin
,
B.
, and
Prade
,
B.
, “
Syngas Capable Combustion Systems Development for Advanced Gas Turbines
,”
ASME
Paper No. GT2006-90970.
28.
Komori
,
T.
,
Shiozaki
,
S.
,
Yamagami
,
N.
,
Kitauchi
,
Y.
, and
Akizuki
,
W.
,
2007
, “
CO2 Emission Reduction Method Through Various Gas Turbine Fuels Applications
,”
MHI Technical Review
, 44(1), 1-5. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.524.5130&rep=rep1&type=pdf
29.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
J. Eng. Gas Turbines Power
,
135
(2), p.
022001
.
30.
Rahm
,
S.
,
Goldmeer
,
J.
,
Moliere
,
M.
, and
Eranki
,
A.
,
2009
, “
Addressing Gas Turbine Fuel Flexibility
,” GE Energy, Atlanta, GA, No.
GER-4601 06/09
.https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/technical/ger/ger-4601b-addressing-gas-turbine-fuel-flexibility-version-b.pdf
31.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
, 127(1), pp. 73–80.
32.
Jaber
,
J. O.
,
Probert
,
S. D.
, and
Williams
,
P. T.
,
1998
, “
Gaseous Fuels (Derived From Oil Shale) for Heavy-Duty Gas Turbines and Combined-Cycle Power Generators
,”
Appl. Energy
,
60
(
1
), pp.
1
20
.
33.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Kroniger
,
D.
,
Kitajima
,
J.
,
Kazari
,
M.
, and
Horikawa
,
A.
,
2012
, “
Numerical and Experimental Characterization of Low NOx Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications
,”
ASME
Paper No. GT2012-69421.
34.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Börner
,
S.
,
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Tekin
,
N.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2013
, “
Experimental and Numerical Characterization of the Dry Low NOx Micromix Hydrogen Combustion Principle at Increased Energy Density for Industrial Hydrogen Gas Turbine Applications
,”
ASME
Paper No. GT2013-94771.
35.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
,
Okada
,
K.
, and
Bohn
,
D.
,
2014
, “
Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle
,”
ASME
Paper No. GT2014-25848.
36.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Haj Ayed
,
A.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2015
, “
Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications
,”
ASME
Paper No. GT2015-42043.
37.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Abanteriba
,
S.
,
2016
, “
Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx Micromix Combustion
,”
ASME
Paper No. GT2016-56430.
38.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
, 2nd
ed.
,
Taylor & Francis
, Philadelphia, PA.
39.
Gao
,
X.
,
2008
,
A Parallel Solution-Adaptive Method for Turbulent Non-Premixed Combusting Flows
,
University of Toronto
,
Toronto, ON, Canada
.
40.
Venditti
,
D. A.
, and
Darmofal
,
D. L.
,
2002
, “
Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows
,”
J. Comput. Phys.
,
176
(
1
), pp.
40
69
.
41.
Magnussen
,
B. F.
,
2005
, “
The Eddy Dissipation Concept a Bridge Between, Science and Technology
,” Norwegian University of Science and Technology Trondheim, Trondheim
, Norway.
42.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.
43.
Hawkes
,
E. R.
,
Sankaran
,
R.
,
Sutherland
,
J. C.
, and
Chen
,
J. H.
,
2007
, “
Scalar Mixing in Direct Numerical Simulations of Temporally Evolving Plane Jet Flames With Skeletal CO/H2 Kinetics
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1633
1640
.
44.
CD-Adapco,
2015
, “
CD-Adapco, STAR-CCM+ Documentation Version 10.02
,” CD-Adapco, Melville, NY.
45.
Günther
,
R.
,
1974
,
Verbrennung und Feuerungen
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.