In this study, losses analysis at bushing regions of a transformer covers is done using finite difference method (FDM), considering that FDM being more flexible to deal with the nonlinear constitutive law and easier to be implemented than finite element (FE) and analytical methods. The analysis is performed based on a 2-level adaptive mesh solution of Maxwell equations and Ohm law at the cross section area in the axial symmetry page of a steel disk, taking account the nonlinear magnetic permeability of the steel. The losses density obtained, as a heat source, is imported into an alternating direction implicit (ADI) approach of heat conduction equation. Therefore, a finite difference (FD) solution algorithm for magneto-thermal analysis on cover plate is obtained by combination of adaptive mesh refinement and ADI-FDM, which improves the accuracy and decreases the computational time without losing accuracy. The reliability of the proposed technique is confirmed by experimental and FE method (FEM) results, considering the temperature distribution of the cover. The comparison of the results with those obtained from FEM and experiments shows the efficiency and capability of the method.

References

References
1.
Maximov
,
S.
,
Escarela-Perez
,
R.
,
Olivares-Galvan
,
J. C.
,
Guzman
,
J.
, and
Campero-Littlewood
,
E.
,
2016
, “
New Analytical Formula for Temperature Assessment on Transformer Tanks
,”
IEEE Trans. Power Delivery
,
31
(
3
), pp.
1122
1131
.
2.
Lopez-Fernandez
,
X. M.
,
Penabad-Duran
,
P.
, and
Turowski
,
J.
,
2012
, “
Three Dimensional Methodology for the Overheating Hazard Assessment on Transformer Covers
,”
IEEE Trans. Ind. Appl.
,
48
(
5
), pp.
1549
1555
.
3.
Kulkarni
,
S. V.
, and
Khaparde
,
S. A.
,
2004
,
Transformer Engineering: Design and Practice
,
CRC Press
, New York.
4.
Kulkarni
,
S. V.
,
Olivares
,
J. C.
,
Escarela-Perez
,
R.
,
Lakhiani
,
V. K.
, and
Turowski
,
J.
,
2004
, “
Evaluation of Eddy Current Losses in the Cover Plates of Distribution Transformers
,”
IEE Proc. Sci. Meas. Technol.
,
151
(
5
), pp.
313
318
.
5.
Lopez-Fernandez
,
X. M.
,
Penabad-Duran
,
P.
,
Turowski
,
J.
, and
Ribeiro
,
P. M.
,
2012
, “
Non-Linear Heating Hazard Assessment on Transformer Covers and Tank Walls
,”
Przeglad Elektrotech. (Elect. Rev.)
,
88
(
2
), pp.
28
31
.
6.
Maximov
,
S.
,
Olivares-Galvan
,
J. C.
,
Magdaleno-Adame
,
S.
,
Escarela-Perez
,
R.
, and
Campero-Littlewood
,
E.
,
2015
, “
New Analytical Formulas for Electromagnetic Field and Eddy Current Losses in Bushing Regions of Transformers
,”
IEEE Trans. Magn.
,
51
(
4
), p. 6300710.
7.
Maximov
,
S.
,
Escarela Perez
,
R.
,
Magdaleno-Adame
,
S.
,
Olivares-Galvan
,
J. C.
, and
Campero-Littlewood
,
E.
,
2015
, “
Calculation of Nonlinear Electromagnetic Fields in the Steel Wall Vicinity of Transformer Bushings
,”
IEEE Trans. Magn.
,
51
(
6
), p. 6300811.
8.
Turowski
,
J.
, and
Pelikant
,
A.
,
1997
, “
Eddy Currents Losses and Hot-Spot Evaluation in Cover Plates of Power Transformers
,”
Proc. Inst. Elect. Eng. Elect. Power Appl.
,
144
(
6
), pp.
435
440
.
9.
Del Vecchio
,
R. M.
,
Poulin
,
B.
,
Feghali
,
P. T.
,
Shah
,
D. M.
, and
Ahuja
,
R.
,
2010
,
Transformer Design Principles: With Applications to Core-Form Power Transformers
,
CRC Press
,
Boca Raton, FL
.
10.
Zahedi
,
M. Z.
, and
Iskender
,
I.
,
2016
, “
3D FEM Optimal Design of Transformer Cover Plates to Decrease Stray Losses and Hot Spot Temperature
,”
Int. J. Tech. Phys. Probl. Eng. (IJTPE)
,
8
(
3
), pp.
56
60
.http://www.iotpe.com/IJTPE/IJTPE-2016/IJTPE-2016.html
11.
Zahedi
,
M. Z.
, and
Iskender
,
I.
,
2018
, “
Fdm Electromagnetic Analysis in Bushing Regions OF Transformer
,”
Int. J. Tech. Phys. Probl. Eng. (IJTPE)
,
10
(
34
), pp.
27
33
.http://www.iotpe.com/IJTPE/IJTPE-2018/IJTPE-2018.html
12.
Penabad-Durana
,
P.
,
Lopez-Fernandez
,
X. M.
, and
Turowski
,
J.
,
2015
, “
3D Non-Linear Magneto-Thermal Behavior on Transformer Covers
,”
Electric Power Syst. Res.
,
121
, pp.
333
340
.
13.
Turowski
,
J.
,
2014
,
Engineering Electodynamics: Electric Machine
,
CRC Press
, Boca Raton, FL.
14.
Olivares
,
J. C.
,
Escarela-Perez
,
R.
,
Kulkarni
,
S. V.
,
de Leon
,
F.
, and
Venegas-Vega
,
M. A.
,
2004
, “
2D Finite-Element Determination of Tank Wall Losses in Pad-Mounted Transformers
,”
Electr. Power Syst. Res.
,
71
(
2
), pp.
179
185
.
15.
Olivares
,
J. C.
,
Escarela-Perez
,
R.
,
Kulkarni
,
S. V.
,
de Leon
,
F.
,
Melgoza-Vasquez
,
E.
, and
Hernandez-Anaya
,
O.
,
2004
, “
Improved Insert Geometry for Reducing Tank-Wall Losses in Pad-Mounted Transformers
,”
IEEE Trans. Power Delivery
,
19
(
3
), pp.
1120
1126
.
16.
Del Vecchio
,
R. M.
, and
Ahuja
,
R.
,
2013
, “
Analytic Nonlinear Correction to the Impedance Boundary Condition
,”
IEEE Trans. Magn.
,
49
(
12
), pp.
5687
5691
.
17.
Sadiku
,
M. N. O.
,
2011
,
Elements of Electromagnetics
,
Oxford University Press
,
New York
.
18.
He
,
Z. Z.
,
Xue
,
X.
, and
Liu
,
J.
,
2013
, “
An Effective Finite Difference Method for Simulation of Bioheat Transfer in Irregular Tissues
,”
ASME J. Heat Transfer
,
135
(
7
), p.
071003
.
19.
Srinivasa
,
N. A.
,
2006
,
Adaptive Mesh Refinement for a Finite Difference Scheme Using a Quadtree Decomposition Approach
,
Texas A&M University
, College Station, TX.
20.
Chen
,
H.
,
Min
,
C.
, and
Gibou
,
F.
,
2007
, “
A Supra-Convergent Finite Difference Scheme for the Poisson and Heat Equations on Irregular Domains and Non-Graded Adaptive Cartesian Grids
,”
J. Sci. Comput.
,
31
(
1–2
), pp.
19
60
.
21.
Buljak
,
V.
,
2011
,
Inverse Analyses With Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics
,
Springer Science & Business Media
, Berlin.
22.
Holman
,
J. P.
,
2010
,
Heat Transfer
,
McGraw-Hill
,
New York
.
23.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, New York.
You do not currently have access to this content.