We investigate the effect of soil type and moisture on the operation of a ground source heat pump (GSHP) system in supplying the energy needs of a greenhouse in Karaj, Alborz province, Iran, in terms of the required length of ground heat exchanger, the working hours, the electricity consumption, as well as the coefficient of performance (COP) of heat pumps. In order to predict the capacity of heat pumps, we use the numerical heat transfer model of Noorollahi et al. (2016, “Numerical Modeling and Economic Analysis of a Ground Source Heat Pump for Supplying Energy for a Greenhouse in Alborz Province, Iran,” J. Cleaner Prod., 131, pp. 145–154) in which the governing equations of heat transfer in the ground heat exchanger are numerically solved through a novel finite difference method. Thermal properties of various soil types, namely sandy soil, sand, silty loam, and silty clay, with three different levels of moisture content referred to as dry, damp, and saturated, are considered as the main inputs for the computer code. The simulations indicate that when moisture is increased from dampness to saturation, the annual working hours of heat pumps decrease by 1.1%, 5.1%, 6.1%, and 4.6%, and their annual electricity consumption is reduced by 2.2%, 10.6%, 12.6%, and 9.7% for sandy soil, sand, silty loam, and silty clay, respectively. Moreover, the average COP of heat pumps increase by 0.9%, 4.0%, 5.2%, and 3.7% in heating mode and 2.4%, 13.0%, 16.5%, and 11.7% in cooling mode for the mentioned soils, respectively.

References

References
1.
Kasaeian
,
A.
,
Barghamadi
,
H.
, and
Pourfayaz
,
F.
,
2017
, “
Performance Comparison Between the Geometry Models of Multichannel Absorbers in Solar Volumetric Receivers
,”
Renewable Energy
,
105
, pp.
1
12
.
2.
Jafari
,
M. M.
,
Atefi
,
G.
,
Khalesi
,
J.
, and
Soleymani
,
A.
,
2012
, “
A New Conjugate Heat Transfer Method to Analyse a 3D Steam Cooled Gas Turbine Blade With Temperature-Dependent Material Properties
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
5
), pp.
1309
1320
.
3.
Jafari
,
M. M.
,
Atefi
,
G. A.
, and
Khalesi
,
J.
,
2012
, “
Advances in Nonlinear Stress Analysis of a Steam Cooled Gas Turbine Blade
,”
Latin Am. Appl. Res.
,
42
(
2
), pp.
167
175
.http://www.scielo.org.ar/scielo.php?pid=S0327-07932012000200010&script=sci_arttext&tlng=pt
4.
Deese
,
J.
,
Razi
,
P.
,
Muglia
,
M.
,
Ramaprabhu
,
P.
, and
Vermillion
,
C.
,
2018
, “
Fused Closed-Loop Flight Dynamics and Wake Interaction Modeling of Tethered Energy Systems
,”
ASME Paper No.
DSCC2018-9190.
5.
Ciriminna
,
R.
,
Meneguzzo
,
F.
,
Pecoraino
,
M.
, and
Pagliaro
,
M.
,
2017
, “
Solar Air Heating and Ventilation in Buildings: A Key Component in the Forthcoming Renewable Energy Mix
,”
Energy Technol.
,
5
(
8
), pp.
1165
1172
.
6.
Maleki
,
A.
, and
Pourfayaz
,
F.
,
2015
, “
Sizing of Stand-Alone Photovoltaic/Wind/Diesel System With Battery and Fuel Cell Storage Devices by Harmony Search Algorithm
,”
J. Energy Storage
,
2
, pp.
30
42
.
7.
Dimitrova
,
E.
,
Vinklers
,
J.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2015
, “
Integrated Biomass Assessment and Optimized Power Generation
,”
Energy Technol.
,
3
(
3
), pp.
265
278
.
8.
Ho
,
I.-H.
, and
Dickson
,
M.
,
2017
, “
Numerical Modeling of Heat Production Using Geothermal Energy for a Snow-Melting System
,”
Geomech. Energy Environ.
,
10
, pp.
42
51
.
9.
Ahmadi
,
M. H.
,
Mehrpooya
,
M.
, and
Pourfayaz
,
F.
,
2016
, “
Thermodynamic and Exergy Analysis and Optimization of a Transcritical CO2 Power Cycle Driven by Geothermal Energy With Liquefied Natural Gas as Its Heat Sink
,”
Appl. Therm. Eng.
,
109
, pp.
640
652
.
10.
Lund
,
J. W.
,
Freeston
,
D. H.
, and
Boyd
,
T. L.
,
2005
, “
Direct Application of Geothermal Energy: 2005 Worldwide Review
,”
Geothermics
,
34
(
6
), pp.
691
727
.
11.
Lund
,
J. W.
,
Freeston
,
D. H.
, and
Boyd
,
T. L.
,
2011
, “
Direct Utilization of Geothermal Energy 2010 Worldwide Review
,”
Geothermics
,
40
(
3
), pp.
159
180
.
12.
Lund
,
J. W.
, and
Boyd
,
T. L.
,
2016
, “
Direct Utilization of Geothermal Energy 2015 Worldwide Review
,”
Geothermics
,
60
, pp.
66
93
.
13.
Farkhutdinov
,
A.
,
Goblet
,
P.
,
de Fouquet
,
C.
, and
Cherkasov
,
S.
,
2016
, “
A Case Study of the Modeling of a Hydrothermal Reservoir: Khankala Deposit of Geothermal Waters
,”
Geothermics
,
59
, pp.
56
66
.
14.
Benli
,
H.
,
2011
, “
Energetic Performance Analysis of a Ground-Source Heat Pump System With Latent Heat Storage for a Greenhouse Heating
,”
Energy Convers. Manage.
,
52
(
1
), pp.
581
589
.
15.
Benli
,
H.
,
2013
, “
A Performance Comparison Between a Horizontal Source and a Vertical Source Heat Pump Systems for a Greenhouse Heating in the Mild Climate Elaziğ, Turkey
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
197
206
.
16.
Li
,
H.
,
Nagano
,
K.
,
Lai
,
Y.
,
Shibata
,
K.
, and
Fujii
,
H.
,
2013
, “
Evaluating the Performance of a Large Borehole Ground Source Heat Pump for Greenhouses in Northern Japan
,”
Energy
,
63
, pp.
387
399
.
17.
Boughanmi
,
H.
,
Lazaar
,
M.
,
Bouadila
,
S.
, and
Farhat
,
A.
,
2015
, “
Thermal Performance of a Conic Basket Heat Exchanger Coupled to a Geothermal Heat Pump for Greenhouse Cooling Under Tunisian Climate
,”
Energy Build.
,
104
, pp.
87
96
.
18.
Ozgener
,
O.
, and
Hepbasli
,
A.
,
2007
, “
A Parametrical Study on the Energetic and Exergetic Assessment of a Solar-Assisted Vertical Ground-Source Heat Pump System Used for Heating a Greenhouse
,”
Build. Environ.
,
42
(
1
), pp.
11
24
.
19.
Hepbasli
,
A.
,
2011
, “
A Comparative Investigation of Various Greenhouse Heating Options Using Exergy Analysis Method
,”
Appl. Energy
,
88
(
12
), pp.
4411
4423
.
20.
Mehrpooya
,
M.
,
Hemmatabady
,
H.
, and
Ahmadi
,
M. H.
,
2015
, “
Optimization of Performance of Combined Solar Collector-Geothermal Heat Pump Systems to Supply Thermal Load Needed for Heating Greenhouses
,”
Energy Convers. Manage.
,
97
, pp.
382
392
.
21.
Cui
,
P.
,
Yang
,
H.
, and
Fang
,
Z.
,
2006
, “
Heat Transfer Analysis of Ground Heat Exchangers With Inclined Boreholes
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1169
1175
.
22.
Li
,
Z.
, and
Zheng
,
M.
,
2008
, “
Development of a Numerical Model for the Simulation of Vertical U-Tubes Ground Heat Exchangers
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
920
924
.
23.
Philippe
,
M.
,
Bernier
,
M.
, and
Marchio
,
D.
,
2009
, “
Validity Ranges of Three Analytical Solutions to Heat Transfer in the Vicinity of Single Boreholes
,”
Geothermics
,
38
(
4
), pp.
407
413
.
24.
Fontaine
,
P.
,
Marcotte
,
D.
,
Pasquier
,
P.
, and
Thibodeau
,
D.
,
2011
, “
Modeling of Horizontal Geoexchange Systems for Building Heating and Permafrost Stabilization
,”
Geothermics
,
40
, pp.
211
220
.
25.
Fujii
,
H.
,
Nishi
,
K.
,
Komaniwa
,
Y.
, and
Chou
,
N.
,
2012
, “
Numerical Modeling of Slinky-Coil Horizontal Ground Heat Exchangers
,”
Geothermics
,
41
, pp.
55
62
.
26.
Hu
,
P.
,
Yu
,
Z.
,
Zhu
,
N.
,
Lei
,
F.
, and
Yuan
,
X.
,
2013
, “
Performance Study of a Ground Heat Exchanger Based on the Multipole Theory Heat Transfer Model
,”
Energy Build.
,
65
, pp.
231
241
.
27.
Rees
,
S. J.
, and
He
,
M.
,
2013
, “
A Three-Dimensional Numerical Model of Borehole Heat Exchanger Heat Transfer and Fluid Flow
,”
Geothermics
,
46
, pp.
1
13
.
28.
Leong
,
W. H.
,
Tarnawski
,
V. R.
, and
Aittomäki
,
A.
,
1998
, “
Effect of Soil Type and Moisture Content on Ground Heat Pump Performance
,”
Int. J. Refrig.
,
21
(
8
), pp.
595
606
.
29.
Li
,
X.
,
Chen
,
Y.
,
Chen
,
Z.
, and
Zhao
,
J.
,
2006
, “
Thermal Performance of Different Types of Underground Heat Exchangers
,”
Energy Build.
,
38
(
5
), pp.
543
547
.
30.
Shang
,
Y.
,
Li
,
S.
, and
Li
,
H.
,
2011
, “
Analysis of Geo-Temperature Recovery Under Intermittent Operation of Ground-Source Heat Pump
,”
Energy Build.
,
43
(
4
), pp.
935
943
.
31.
Choi
,
J. C.
,
Lee
,
S. R.
, and
Lee
,
D. S.
,
2011
, “
Numerical Simulation of Vertical Ground Heat Exchangers: Intermittent Operation in Unsaturated Soil Conditions
,”
Comput. Geotechnics
,
38
(
8
), pp.
949
958
.
32.
Simms
,
R. B.
,
Haslam
,
S. R.
, and
Craig
,
J. R.
,
2014
, “
Impact of Soil Heterogeneity on the Functioning of Horizontal Ground Heat Exchangers
,”
Geothermics
,
50
, pp.
35
43
.
33.
Chong
,
C. S. A.
,
Gan
,
G.
,
Verhoef
,
A.
,
Garcia
,
R. G.
, and
Vidale
,
P. L.
,
2013
, “
Simulation of Thermal Performance of Horizontal Slinky-Loop Heat Exchangers for Ground Source Heat Pumps
,”
Appl. Energy
,
104
, pp.
603
610
.
34.
Beier
,
R. A.
, and
Holloway
,
W. A.
,
2015
, “
Changes in the Thermal Performance of Horizontal Boreholes With Time
,”
Appl. Therm. Eng.
,
78
, pp.
1
8
.
35.
Noorollahi
,
Y.
,
Bigdelou
,
P.
,
Pourfayaz
,
F.
, and
Yousefi
,
H.
,
2016
, “
Numerical Modeling and Economic Analysis of a Ground Source Heat Pump for Supplying Energy for a Greenhouse in Alborz Province, Iran
,”
J. Cleaner Prod.
,
131
, pp.
145
154
.
36.
Caneta Research Inc.
,
2015
, “GS2000™ Ground Heat Exchanger Design Program,” Caneta Research Inc., Mississauga, ON, Canada, accessed Aug. 2015, http://www.canetaenergy.com
You do not currently have access to this content.