Effects of an upstream combustor wall on turbine nozzle endwall film cooling performance are numerically examined in a linear cascade in this paper. Film cooling is by two rows of cooling holes at 20% of the axial chord length upstream of the vane leading edge (LE) plane. The combustor walls are modeled as flat plates with square trailing edges (TE) positioned upstream of the endwall film cooling holes. A combustor wall is in line with the LE of every second vane. The influence of the combustor wall, when shifted in the axial and tangential directions, is investigated to determine effects on passage endwall cooling for three representative film cooling blowing ratios. The results show how shed vortices from the combustor wall greatly alter the flow field near the cooling holes and inside the vane passage. Film cooling distribution patterns, particularly in the entry region and along the pressure side of the passage, are affected. The combustor wall leads to an imbalance in film cooling distribution over the endwalls for adjacent vane passages. Results show a larger effect of tangential shift of the combustor wall on endwall cooling effectiveness than the effect of an equal axial shift. The study provides guidance regarding design of combustor-to-turbine transition ducts.

References

References
1.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.
2.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
, and
Morris
,
M. C.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
ASME
Paper No. GT2014-26373.
3.
Vogel
,
G.
,
Wagner
,
G.
, and
Bölcs
,
A.
,
2002
, “
Transient Liquid Crystal Technique Combined With PSP for Improved Film Cooling Measurements
,”
Tenth International Symposium on Flow Visualization
, Kyoto, Japan, Paper No.
F0109
.
4.
Colban
,
W.
,
Thole
,
K.
, and
Haendler
,
M.
,
2008
, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
130
(
3
), p.
031007
.
5.
Gao
,
Z. H.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.
6.
Friedrichs, S.
,
Hodson, H. P.
, and
Dawes, W. N.
, 1999, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
(4), pp. 772–780.
7.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part II: Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.
8.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
9.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. J.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance—Part II: Thermal Measurements
,”
ASME
Paper No. 2000-GT-200.
10.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
,
2007
, “
Effectiveness Distributions on Turbine Blade Cascade Platforms Through Simulated Stator-Rotor Seals
,”
AIAA J. Thermophys. Heat Transfer
,
21
(
4
), pp.
754
762
.
11.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2007
, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
,
130
(
4
), p.
041019
.
12.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Impact of the Combustor-Turbine Interface Slot Orientation on the Durability of a Nozzle Guide Vane Endwall
,”
ASME J. Turbomach.
,
135
(
4
), p.
041019
.
13.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.
14.
Liu
,
G.
,
Liu
,
S.
,
Zhu
,
H.
,
Lapworth
,
B. C.
, and
Forest
,
A. E.
,
2004
, “
Endwall Heat Transfer and Film Cooling Measurements in a Turbine Cascade With Injection Upstream of Leading Edge
,”
Heat Transfer–Asian Res.
,
33
(
3
), pp.
141
152
.
15.
Oke
,
R.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
ASME
Paper No. 2000-GT-0214.
16.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
735
.
17.
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,”
ASME
Paper No. GT2003-38319.
18.
Zhang
,
L. J.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H. K.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
ASME
Paper No. GT2015-42541.
19.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021009
.
20.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
.
21.
Stitzel
,
S.
, and
Thole
,
K. A.
,
2004
, “
Flow Field Computations of Combustor-Turbine Interactions Relevant to a Gas Turbine Engine
,”
ASME J. Turbomach.
,
126
(
1
), pp.
122
129
.
22.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
23.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2011
, “
Aerodynamic and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.
24.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
4
), p.
041002
.
25.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aerothermal Performance of a Nozzle Vane Cascade With a Generic Nonuniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection
,”
ASME J. Turbomach.
,
139
(
10
), p.
101004
.
26.
Mitsubishi Heavy Industries,
1991, “
Mitsubishi Gas Turbine M501F/M701F, Product Brochure
,”
Mitsubishi Heavy Industries, Minato, Tokyo
.
27.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2014
, “
Influence of Large Wake Disturbances Shed From the Combustor Wall on the Leading Edge Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081503
.
28.
Mazzoni
,
C. M.
,
Rosic
,
B.
, and
Klostermeier
,
C.
,
2015
, “
Combustor Wall Axial Location Effects on First Vane Leading-Edge Cooling
,”
AIAA J. Propul. Power
,
31
(
4
), pp.
1094
1106
.
29.
Wang
,
Z. D.
,
Wang
,
D.
,
Wang
,
Z. H.
, and
Feng
,
Z. P.
,
2018
, “
Heat Transfer Analyses of Film-Cooled HP Turbine Vane Considering Effects of Swirl and Hot Streak
,”
Appl. Therm. Eng.
,
142
, pp. 815–829.
30.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.
31.
ANSYS
,
2008
,
CFX-11.0 Solver Theory
,
ANSYS
,
Canonsburg, PA
.
32.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
33.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp. 786–793.
34.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.
35.
Papa
,
M.
,
2006
, “
Influence of Blade Leading Edge Geometry and Upstream Blowing on the Heat/Mass Transfer in a Turbine Cascade
,” Ph.D. thesis, University of Minnesota, MN.
36.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
.
You do not currently have access to this content.