A 3D transient numerical model of a ductile iron ladle has been developed to predict the fluid flow and temperature drop during the holding and teeming. The volume of fluid (VOF) multiphase model has been employed to track the interface between the liquid metal and the air. The SST k-ω model has been applied to model the turbulence due to natural convection in the ladle. The temperature evaluation in the refractory lining walls during preheating and teeming is shown. Appropriate boundary conditions are applied for natural convection and radiation to surroundings from all the outer steel surfaces as well as from the top glass wool cover. The heat loss due to radiation from the liquid metal surface to the surrounding walls is also considered in the present model by applying an energy sink term to the cells at the interface. The numerical results of the 780 kg ladle have been compared with the measured temperature drop of the metal using an S-type thermocouple for two ladle cycles and the difference between the measured and predicted temperature at the end of two cycles is 3 °C. Decreasing the ladle capacity to 650 kg for pouring the same amount of metal increased the temperature drop by 11 °C due to increase in surface area to melt volume ratio. Also increasing the refractory thickness for 650 kg ladle increased the temperature drop by 4 °C due to the heat accumulation in the ladle during the cyclic transient heat transfer process.

References

References
1.
Egerton
,
P.
,
Howarth
,
J. A.
,
Poots
,
G.
, and
Taylor-Reed
,
S.
,
1979
, “
A Theoretical Investigation of Heat Transfer in a Ladle of Molten Steel During Pouring
,”
Int. J. Heat Mass Transfer
,
22
(
11
), pp.
1525
1532
.
2.
Urquhart
,
R. C.
,
Guthrie
,
R. I. L.
, and
Howat
,
D. D.
,
1973
, “
Heat Losses From Ladles During Teeming
,”
J. South. Afr. Inst. Min. Metall.
,
74
(4), pp.
132
139
.https://www.saimm.co.za/Journal/v074n04p132.pdf
3.
Austin
,
P. R.
,
Camplin
,
J. M.
,
Herbertson
,
J.
, and
Taggart
,
I. J.
,
1992
, “
Mathematical Modelling of Thermal Stratification and Drainage of Steel Ladles
,”
ISIJ Int.
,
32
(
2
), pp.
196
202
.
4.
Peaslee
,
K. D.
,
Lekakh
,
S. N.
,
Sander
,
T. P.
, and
Smith
,
J. D.
,
2005
, “
Efficiency in Steel Melting: Ladle Development
,”
59th SFSA T&O Conference
, Chicago, IL, pp.
1
12
.
5.
Peaslee
,
K. D.
,
Lekakh
,
S. N.
,
Smith
,
J. D.
, and
Mangesh
,
V.
,
2007
, “
Increasing Energy Efficiency Through Improvements in Ladle Materials and Practices
,”
61st SFSA T&O Conference
, Chicago, IL, pp. 1–14.
6.
Volkov
,
O.
, and
Janke
,
D.
,
2003
, “
Modelling of Temperature Distribution in Refractory Ladle Liningfor Steelmaking
,”
ISIJ Int.
,
43
(
8
), pp.
1185
1190
.
7.
Tripathi
,
A.
,
Saha
,
J. K.
,
Singh
,
J. B.
, and
Ajmani
,
S. K.
,
2012
, “
Numerical Simulation of Heat Transfer Phenomenon in Steel Making Ladle
,”
ISIJ Int.
,
52
(
9
), pp.
1591
1600
.
8.
Fredman
,
T. P.
,
Torrkulla
,
J.
, and
Saxen
,
H.
,
1999
, “
Two-Dimensional Dynamic Simulation of the Thermal State of Ladles
,”
Metall. Mater. Trans. B
,
30
(
2
), pp.
323
330
.
9.
Pan
,
Y.
, and
Bjorkman
,
B.
,
2002
, “
Physical and Mathematical Modelling of Thermal Stratification Phenomena in Steel Ladles
,”
ISIJ Int.
,
42
(
6
), pp.
614
623
.
10.
Davila
,
O.
,
Morales
,
R. D.
, and
Garcia-Demedices
,
L.
,
2006
, “
Mathematical Simulation of Fluid Dynamics During Steel Draining Operations From a Ladle
,”
Metall. Mater. Trans. B
,
37
(
1
), pp.
71
87
.
11.
Siemens PLM Software, Inc.
,
2016
, “
User Guide, STARCCM+, Version 11.02
,” Siemens PLM Software, London, UK.
12.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Pearson Education Limited
,
London, UK
.
13.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
14.
Hottel
,
H. C.
,
1951
, “
Notes on Radiant Heat Transmission
,” Chemical Engineering Department, MIT, Cambridge, MA.
15.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
, San Diego, CA.
16.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
17.
Kodandaraman
,
C. P.
, and
Subramanyan
,
S.
,
2007
,
Heat and Mass Transfer Data Book
,
6th ed
,
New Age International Publishers
,
New Delhi, India
.
18.
Overfelt
,
R. A.
,
Taylor
,
R. E.
,
Baktiyarov
,
S. I.
, and
Wang
,
D.
,
2002
, “
Thermophysical Properties of 201 Aluminium, Ductile Iron and Sebiloy II
,”
AFS Trans.
,
1
(110), pp. 257–266.
19.
Li
,
D.
,
Shi
,
D.
,
Li
,
F.
,
Zhang
,
Y.
, and
Dong
,
J.
,
2005
, “
A New Method of Fast Measuring Surface Tension of Melt Cast Iron and Its Application in Graphite Shape Identification
,”
China Foundry
,
2
(
1
), pp.
34
37
.http://www.foundryworld.com/uploadfile/20094857863297.pdf
20.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
5th ed
,
McGraw-Hill
,
New York
.
21.
Kreith
,
F.
,
Manglik
,
R. M.
, and
Bohn
,
M. S.
,
2011
,
Principles of Heat Transfer
,
7th ed.
,
Cengage Learning
,
Stanford, CA
.
22.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
New York
.
23.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.
24.
ANSYS
,
2015
, “
ANSYS Design Modeler User Guide
,” ANSYS, Canonsburg, PA.
You do not currently have access to this content.