With today's computing technology, research on soot particles using simulation works has become more preferable as a supplementary to the existing experimental methods. The objective of this study is to investigate the effect of different engine load conditions to in-cylinder soot particles formation. This is to clarify the relationship between soot mass fraction (SMF) and size distribution. The first section of the study is conducted by computational analysis using a detailed kinetics soot model, particulate size mimic (PSM), which is based on the concept of the discrete sectional method. The analysis is carried out within closed-cycle combustion environment which is from the inlet valve closing (IVC) to the exhaust valve opening (EVO). The next section is conducted by experimental work deliberately for validation purpose. The total soot mass obtained from the computational work during EVO is comparable to the calculated value by less than 13% error for all of the experimental cases. The soot size distribution measurement indicates that exhaust out particles are dominantly in the dual-mode size range, <10 nm and 11–30 nm. The relationship between the soot mass and size distribution demonstrates that soot mass fraction does not completely rely on soot size distribution as well as particle size range. In most of the cases, particles with the moderate size range (11–60 nm) hold the highest mass fraction during EVO. On the whole, this paper provides significant information that contributes key knowledge to indicate that soot mass fraction is not entirely dependent on soot size distribution as well as particle size range.

References

References
1.
Gómez-Rico
,
M. F.
,
Martı́n-Gullón
,
I.
,
Fullana
,
A.
,
Conesa
,
J. A.
, and
Font
,
R.
,
2003
, “
Pyrolysis and Combustion Kinetics and Emissions of Waste Lube Oils
,”
J. Anal Appl. Pyrolysis
,
68–69
, pp.
527
46
.
2.
Bhardawaj
,
A.
,
Habib
,
G.
,
Kumar
,
A.
,
Singh
,
S.
, and
Nema
,
A. K.
,
2017
, “
A Review of Ultrafine Particle-Related Pollution During Vehicular Motion, Health Effects and Control
,”
J. Environ. Sci. Public Health
,
1
(
04
), pp.
268
288
.
3.
Brunekreef
,
B.
, and
Holgate
,
S. T.
,
2002
, “
Air Pollution and Health
,”
Lancet
,
360
(
9341
), pp.
1233
1242
.
4.
Englert
,
N.
,
2004
, “
Fine Particles and Human Health—A Review of Epidemiological Studies
,”
Toxicol. Lett.
,
149
(
1–3
), pp.
235
242
.
5.
Kim
,
K.
,
Kabir
,
E.
, and
Kabir
,
S.
,
2015
, “
A Review on the Human Health Impact of Airborne Particulate Matter
,”
Environ. Int.
,
74
, pp.
136
143
.
6.
George
,
S.
,
Balla
,
S.
, and
Gautam
,
M.
,
2007
, “
Effect of Diesel Soot Contaminated Oil on Engine Wear
,”
Wear
,
262
(
9–10
), pp.
1113
1122
.
7.
Ibrahim
,
F.
,
Wan Mahmood
,
W. M. F.
,
Abdullah
,
S.
, and
Abu Mansor
,
M. R.
,
2015
, “
A Review of Soot Particle Measurement in Lubricating Oil
,”
Def ST Tech. Bull.
,
8
, pp.
141
52
.
8.
Ibrahim
,
F.
,
Wan Mahmood
,
W. M. F.
,
Abdullah
,
S.
, and
Abu Mansor
,
M. R.
,
2015
, “
Investigation of Soot Emission in Compression Ignition Diesel Engine by CFD Simulation
,” 3rd International Conference on Recent Advances in Automotive Engineering & Mobility Research, Melaka, Malaysia, Dec. 1--3, Paper No. P040-ReCAR2015.
9.
Ibrahim
,
F.
,
Wan Mahmood
,
W. M. F.
,
Abdullah
,
S.
, and
Abu Mansor
,
M. R.
,
2016
, “
Soot Particle Measurement in Engine Cylinder: A Review
,”
J. Teknol.
,
78
(
8
), pp.
187
195
.
10.
Omidvarborna
,
H.
,
Kumar
,
A.
, and
Kim
,
D.
,
2015
, “
Recent Studies on Soot Modeling for Diesel Combustion
,”
Renew. Sustain. Energy Rev.
,
48
, pp.
635
647
.
11.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2014
,
CONVERGE (v2.2.0)
,
Convergent Science Inc
,
Madison, WI
.
12.
Ibrahim
,
F.
,
Wan Mahmood
,
W. M. F.
,
Abdullah
,
S.
, and
Abu Mansor
,
M. R.
, “
Comparison of Soot Emissions in Compression Ignition Diesel Engine by CFD Simulation From Simple to Detailed Soot Model
,”
SAE
Paper No. 2017-01-1006 2017
.
13.
Kumar
,
S.
, and
Ramkrishna
,
D.
,
1996
, “
On the Solution of Population Balance Equations by Discretization - II. A Moving Pivot Technique
,”
Chem. Eng. Sci.
,
51
(
8
), pp.
1333
1342
.
14.
Wen
,
J. Z.
,
Thomson
,
M. J.
,
Park
,
S. H.
,
Rogak
,
S. N.
, and
Lightstone
,
M. F.
,
2005
, “
Study of Soot Growth in a Plug Flow Reactor Using a Moving Sectional Model
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1477
1484
.
15.
Netzell
,
K.
, Lehtiniemi, H., and
Mauss
,
F.
, 2007, “
Calculating the Soot Particle Size Distribution Function in Turbulent Diffusion Flames Using a Sectional Method
,”
Proc. Combust. Inst.
,
31
(1), pp.
667
674
.
16.
Mauss
,
F.
,
Trillken
,
B.
,
Breitbach
,
H.
, and
Peters
,
N.
,
1994
,
Soot Combustion—Mechanisms and Models
,
Springer-Verlag
,
Berlin
.
17.
Marchal
,
C.
,
Delfau
,
J.-L.
,
Vovelle
,
C.
,
Moreac
,
G.
,
Mounaim_Rousselle
,
C.
, and
Mauss
,
F.
,
2009
, “
Modelling of Aromatics and Soot Formation From Large Fuel Molecules
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
753
759
.
18.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, et al. , “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 2003-01-1043 2003
.
19.
Choi
,
M. Y.
,
Hamins
,
A.
,
Mulholland
,
G. W.
, and
Kashiwagi
,
T.
,
1994
, “
Simultaneous Optical Measurement of Soot Volume Fraction and Temperature in Premixed Flames
,”
Combust. Flame
,
99
(
1
), pp.
174
186
.
20.
Zeuch
,
T.
,
Moréac
,
G.
,
Ahmed
,
S. S.
, and
Mauss
,
F.
,
2008
, “
A Comprehensive Skeletal Mechanism for the Oxidation of n-Heptane Generated by Chemistry-Guided Reduction
,”
Combust. Flame
,
155
(
4
), pp.
651
674
.
21.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
22.
Reitz
,
R. D.
, and
Bracco
,
F. V.
,
1986
, “
Mechanisms of Breakup of Round Liquid Jets
,”
Encyclopedia of Fluid Mechanics
,
N. P.
Cheremisinof
, ed.,
Gulf Publishing Co
,
Houston, TX
, pp.
223
249
.
23.
Ricart
,
L. M.
,
Xin
,
J.
,
Bower
,
G. R.
, and
Reitz
,
R. D.
,
1997
, “
In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine
,”
SAE
Paper No. 971591
.
24.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Paper No. 930072
.
25.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
26.
Naber
,
J. D.
, and
Reitz
,
R. D.
,
1988
, “
Modeling Engine Spray/Wall Impingement
,”
SAE
Paper No. 880107
.
27.
González
,
M. A.
,
Lian
,
Z. W.
, and
Reitz
,
R. D.
,
1992
, “
Modeling Diesel Engine Spray Vaporization and Combustion
,”
SAE
Paper No. 920579
, pp.
1
13
.https://www.jstor.org/stable/44611274
28.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ–ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
29.
Alkidas
,
A. C.
,
1984
, “
Relationships Between Smoke Measurements and Particulate Measurements
,”
SAE
Paper No. 840412
.
30.
Zhang
,
R.
,
2014
,
Soot Particle Sampling and Morphology Analysis in an Optically Accessible Diesel Engine
,
The University of New South Wales
,
Sydney, Australia
.
31.
Zhang
,
R.
, and
Kook
,
S.
,
2015
, “
Structural Evolution of Soot Particles During Diesel Combustion in a Single-Cylinder Light-Duty Engine
,”
Combust. Flame
,
162
(
6
), pp.
2720
2728
.
32.
Zhang
,
R.
,
Zhang
,
Y.
, and
Kook
,
S.
,
2017
, “
Morphological Variations of In-Flame and Exhaust Soot Particles Associated With Jet-to-Jet Variations and Jet-Jet Interactions in a Light-Duty Diesel Engine
,”
Combust. Flame
,
176
, pp.
377
90
.
33.
Roy
,
S. P.
, and
Haworth
,
D. C.
,
2016
, “
A Systematic Comparison of Detailed Soot Models and Gas-Phase Chemical Mechanisms in Laminar Premixed Flames
,”
Combust. Sci. Technol.
,
188
(
7
), pp.
1021
1053
.
34.
Aubagnac-Karkar
,
D.
,
Michel
,
J.
,
Colin
,
O.
,
Vervisch-Kljakic
,
P. E.
, and
Darabiha
,
N.
,
2015
, “
Sectional Soot Model Coupled to Tabulated Chemistry for Diesel RANS Simulations
,”
Combust. Flame
,
162
(
8
), pp.
3081
3099
.
35.
Eberle
,
C.
,
Gerlinger
,
P.
, and
Aigner
,
M.
,
2017
, “
A Sectional PAH Model With Reversible PAH Chemistry for CFD Soot Simulations
,”
Combust. Flame
,
179
, pp.
63
73
.
36.
Lucchesi
,
M.
,
Abdelgadir
,
A.
,
Attili
,
A.
, and
Bisetti
,
F.
,
2017
, “
Simulation and Analysis of the Soot Particle Size Distribution in a Turbulent Nonpremixed Flame
,”
Combust. Flame
,
178
, pp.
35
45
.
37.
Petzold
,
A.
,
Ogren
,
J. A.
,
Fiebig
,
M.
,
Laj
,
P.
,
Li
,
S.-M.
,
Baltensperger
,
U.
,
Holzer-Popp
,
T.
,
Kinne
,
S.
,
Pappalardo
,
G.
,
Sugimoto
,
N.
,
Wehrli
,
C.
,
Wiedensohler
,
A.
, and
Zhang
,
X.-Y.
,
2013
, “
Recommendations for Reporting “Black Carbon” Measurements
,”
Atmos. Chem. Phys.
,
13
(
16
), pp.
8365
–83
79
.
38.
Tumolva
,
L.
,
Park
,
J.-Y.
,
Kim
,
J.
,
Miller
,
A. L.
,
Chow
,
J. C.
,
Watson
,
J. G.
, et al. .,
2010
, “
Morphological and Elemental Classification of Freshly Emitted Soot Particles and Atmospheric Ultrafine Particles Using the TEM/EDS
,”
Aerosol Sci. Technol.
,
44
(
3
), pp.
202
–2
15
.
39.
Kondo
,
K.
,
Aizawa
,
T.
,
Kook
,
S.
, and
Pickett
,
L.
,
2013
, “
Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame
,”
SAE
Paper No. 2013-01-0908
.
You do not currently have access to this content.