The ignition, combustion, and emission behavior of crushed corn cob pellets of different shapes and sizes with a chemical binder (Epoxy1092) under certain operating conditions in a fixed-bed combustor were investigated in this study. Also, chemical kinetic parameters are determined by using thermogravimetric and differential thermogravimetric (TG/DTG) analysis data for both pellet and binder. It was found that the activation energy value is 129.82 kJ mol−1 for pellets, while the activation energy value is 109.62 kJ mol−1 for epoxy 1092. The surface and central pellet temperatures histories, the mass loss rates, conversion rate as well as a simple combustion ash analysis are recorded and analyzed. It was found that increasing the starting air temperature and air velocity and decreasing the size of pellet lead to a decrease in devolatilization time, time to reach maximum temperature, char combustion time, and an increase in the total combustion rate. Regarding to emissions; it was found that the CO2 content increased with increasing the starting air temperature and flow velocity and the maximum CO concentration reaches to 49 ppm at 9.6 ± 1.04% O2. The fouling, slagging indices, and ash viscosity were investigated. The corn cob pellets show a relatively high fouling inclination (FI) and a medium slagging inclination.

References

References
1.
Vassilev
,
S.
,
Baxter
,
D.
,
Andersen
,
L.
, and
Vassileva
,
C.
,
2010
, “
An Overview of the Chemical Composition of Biomass
,”
Fuel
,
89
, pp.
913
33
.
2.
Vassilev
,
S.
,
Baxter
,
D.
,
Andersen
,
L.
,
Vassileva
,
C.
, and
Morgan
,
T.
,
2012
, “
An Overview of the Organic and Inorganic Phase Composition of Biomass
,”
Fuel
,
94
, pp.
1
33
.
3.
Demirbas
,
A.
,
2001
, “
Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals
,”
Energy Convers. Manage.
,
42
, pp.
1357
78
.
4.
Demirbas
,
A.
,
2005
, “
Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues
,”
Prog. Energy Combust.
,
31
, pp.
171
92
.
5.
Naik
,
S.
,
Goud
,
V. V.
,
Rout
,
P. K.
,
Jacobson
,
K.
, and
Dalai
,
A. K.
,
2010
, “
Characterization of Canadian Biomass for Alternative Renewable Biofuel
,”
Renewable Energy
,
35
, pp.
1624
31
.
6.
Williams
,
A.
,
Jones
,
J. M.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2012
, “
Pollutants From the Combustion of Solid Biomass Fuels
,”
Prog. Energy Combust.
,
38
, pp.
113
37
.
7.
Jordan
,
C. A.
, and
Akay
,
G.
,
2012
, “
Speciation and Distribution of Alkali, Alkali Earth Metals and Major Ash Forming Elements During Gasification of Fuel Cane Bagasse
,”
Fuel
,
91
, pp.
253
63
.
8.
McKendry
,
P.
,
2002
, “
Energy Production From Biomass—Part 1: Overview of Biomass
,”
Bioresour. Technol.
,
83
, pp.
37
46
.
9.
Bach
,
Q. V.
,
Tran
,
K. Q.
,
Khalil
,
R. A.
,
Skreiberg
,
Ø.
, and
Seisenbaeva
,
G.
,
2013
, “
Comparative Assessment of Wet Torrefaction
,”
Energy Fuel
,
27
, pp.
4732
6753
.
10.
Van der Stelt
,
M. J. C.
,
Gerhauser
,
H.
,
Kiel
,
J. H. A.
, and
Ptasinski
,
K. J.
,
2011
, “
Biomass Upgrading by Torrefaction for the Production of Biofuel: A Review
,”
Biomass Bioenergy
,
35
(9), pp.
3748
3762
.
11.
Tabarés
,
J. L. M.
,
Ortiz
,
L.
,
Granada
,
E.
, and
Viar
,
F. P.
,
2000
, “
Feasibility Study of Energy Use for Densificated Lignocellulosic Material (Briquettes)
,”
Fuel
,
79
, pp.
1229
1237
.
12.
Lu
,
H.
,
Ip
,
E.
,
Scott
,
J.
,
Foster
,
P.
,
Vickers
,
M.
, and
Baxter
,
L. L.
,
2010
, “
Effects of Particle Shape and Size on Devolatilization of Biomass Particle
,”
Fuel
,
89
, pp.
1156
1168
.
13.
Faravelli
,
T.
,
Frassoldati
,
A.
,
Migliavacca
,
G.
, and
Ranzi
,
E.
,
2010
, “
Detailed Kinetic Modeling of the Thermal Degradation of Lignins
,”
Biomass Bioenergy
,
34
, pp.
290
301
.
14.
Rath
,
J.
,
Wolfinger
,
M. G.
,
Steiner
,
G.
,
Krammer
,
G.
,
Barontini
,
F.
, and
Cozzani
,
V.
,
2003
, “
Heat of Wood Pyrolysis
,”
Fuel
,
82
(
1
), pp.
81
91
.
15.
Kung
,
H. C.
,
1972
, “
A Mathematical Model of Wood Pyrolysis
,”
Combust. Flame
,
18
(
2
), pp.
185
195
.
16.
Saastamoinen
,
J.
, and
Richard
,
J. R.
,
1996
, “
Simultaneous Drying and Pyrolysis of Solid Fuel Particles
,”
Combust. Flame
,
106
(
3
), pp.
288
300
.
17.
Saastamoinen
,
J. J.
,
Taipale
,
R.
,
Horttanainen
,
M.
, and
Sarkomaa
,
P.
,
2000
, “
Propagation of the Ignition Front in Beds of Wood Particles
,”
Combust. Flame
,
123
(
1–2
), pp.
214
226.
18.
Rönnbäck
,
M.
,
Axell
,
M.
, and
Gustavsson
,
L.
,
2000
, “
Combustion Processes in a Biomass Fuel Bed-Experimental Results
,”
Progress in Thermochemical Biomass Conversion
, pp.
17
22
.
19.
Boman
,
C.
,
Israelsson
,
S.
,
Öhman
,
M.
, and
Sweden
,
L.
,
2008
, “
Combustion Properties and Environmental Performance During Small Scale Combustion of Pelletized Hardwood Raw Material of Aspen
,”
World Bioenergy
, Jonkoping, Sweden, May 27–29, pp.
28
39
.http://www.bioenerginord.com/Documents/Aspen%20presentation%20at%20World%20Bioenergy%202008.pdf
20.
Kuo
,
J. T.
, and
Hsi
,
C. L.
,
2005
, “
Pyrolysis and Ignition of Single Wooden Spheres Heated in High Temperature Streams of Air
,”
Combust Flame
,
142
(
4
), pp.
401
412
.
21.
Katunzi
,
M.
,
2006
,
Biomass Conversion in Fixed Bed Experiments
,
Department of Mechanical Engineering, Eindhoven University of Technology
, Eindhoven,
The Netherland
, p.
63
.
22.
Fleckl
,
T.
,
Obernberger
,
I.
, and
Jager
,
H.
, “
Combustion Diagnostics at a Biomass-Fired Grate Furnace Using FT-IR Absorption Spectroscopy for Hot Gas Measurements
,”
Fifth European Conference on Industrial Furnaces and Boilers
, Porto, Portugal, Apr. 11–14, pp. 1–11.https://bios-bioenergy.at/uploads/media/Paper-Fleckl-FTIR-Estoril-2000-03-16.pdf
23.
Tissari
,
J.
,
Hytonen
,
K.
,
Lyyranen
,
J.
, and
Jokiniemi
,
J.
,
2007
, “
A Novel Field Measurement Method for Determining Fine Particle and Gas Emissions From Residential Wood Combustion
,”
Atmos Environ.
,
41
(
37
), pp.
8330
8344
.
24.
Li
,
J.
,
Bonvicini
,
G.
,
Biagini
,
E.
,
Yang
,
W.
, and
Tognotti
,
L.
,
2015
, “
Characterization of High Temperature Rapid Char Oxidation of Raw and Torrefied Biomass Fuels
,”
Fuel
,
143
, pp.
492
498
.
25.
Nimmo
,
W.
,
Daood
,
S. S.
, and
Gibbs
,
B. M.
,
2010
, “
The Effect of O2 Enrichment on NOx Formation in Biomass Co-Fired Pulverised Coal Combustion
,”
Fuel
,
89
(
10
), pp.
2945
2952
.
26.
International
,
A.
,
2007
, “
Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials
,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No.
ASTM D4442-07
.
27.
Niu
,
S.
,
Han
,
K.
, and
Lu
,
C.
,
2011
, “
Release of Sulfur Dioxide and Nitric Oxide and Characteristic of Coal Combustion Under the Effect of Calcium Based Organic Compounds
,”
Chem. Eng. J.
,
168
(
1
), pp.
255
261
.
28.
Li
,
X.
,
Ma
,
B.
,
Xu
,
L.
,
Hu
,
Z.
, and
Wang
,
X.
,
2006
, “
Thermogravimetric Analysis of the Co-Combustion of the Blends With High Ash Coal and Waste Tyres
,”
Thermochim. Acta
,
441
(
1
), pp.
79
83
.
29.
Gong
,
X.
,
Guo
,
Z.
, and
Wang
,
Z.
,
2010
, “
Reactivity of Pulverized Coals During Combustion Catalyzed by CeO2 and Fe2O3
,”
Combust. Flame
,
157
(
2
), pp.
351
356
.
30.
Luo
,
S. Y.
,
Xiao
,
B.
,
Hu
,
Z. Q.
,
Liu
,
S. M.
, and
Guan
,
Y. W.
,
2009
, “
Experimental Study on Oxygen-Enriched Combustion of Biomass Micro Fuel
,”
Energy
,
34
(
11
), pp.
1880
1884
.
31.
Coats
,
A. W.
, and
Redfern
,
J. P.
,
1964
, “
Kinetic Parameters From Thermogravimetric Data
,”
Nature
,
201
(
4914
), pp.
68
69
.
32.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops Part 2
,”
Chem. Eng. Prog
,
48
(4), pp.
173
180
.
33.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
, Vol.
75
,
Oxford University Press
,
London, UK
.
34.
Herman
,
D.
,
1981
, “
The Rate of Pyrolysis of Densified Ponderosa Pine
,” MS thesis, Chemical Engineering, Colorado School of Mines, Golden, CO.
35.
Orang
,
N.
, and
Tran
,
H.
,
2014
, “
Effect of Feedstock Moisture Content on Biomass Boiler Operation
,”
MS thesis
, Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.https://www.researchgate.net/publication/284748442
36.
Wang
,
Q.
,
Zhao
,
W.
,
Liu
,
H.
,
Jia
,
C.
, and
Xu
,
H.
,
2012
, “
Reactivity and Kinetic Analysis of Biomass During Combustion
,”
Energy Procedia
,
17
, pp.
869
875
.
37.
Ghetti
,
P.
,
Ricca
,
L.
, and
Angelini
,
L.
,
1996
, “
Thermal Analysis of Biomass and Corresponding Pyrolysis Products
,”
Fuel
,
75
(
5
), pp.
565
573
.
38.
Kumar
,
A.
,
Wang
,
L.
,
Jones
,
Y. A.
,
Dzenis
,
D. D.
, and
Hanna
,
M. A.
,
2008
, “
Thermogravimetric Characterization of Corn Stover as Gasification and Pyrolysis Feedstock
,”
Biomass Bioenergy
,
32
(
5
), pp.
460
467
.
39.
Khatami
,
R.
,
Stivers
,
C.
,
Joshi
,
K.
,
Levendis
,
Y.
, and
Sarofim
,
A.
,
2012
, “
Combustion Behavior of Single Particles From Three Different Coal Ranks and From Sugar Cane Bagasse in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
3
), pp.
1253
1271
.
40.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
, and
Pevida
,
C.
,
2014
, “
Single Particle Ignition and Combustion of Anthracite, Semi-Anthracite and Bituminous Coals in Air and Simulated Oxy-Fuel Conditions
,”
Combust Flame
,
161
(
4
), pp.
1096
1108
.
41.
Khatami
,
R.
, and
Levendis
,
Y.
,
2011
, “
On the Deduction of Single Coal Particle Combustion Temperature From Three-Color Optical Pyrometry
,”
Combust Flame
,
158
(
9
), pp.
1822
1836
.
42.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
, and
Pevida
,
C.
,
2014
, “
Combustion of Single Biomass Particles in Air and in Oxy-Fuel Conditions
,”
Biomass Bioenergy
,
64
, pp.
162
174
.
43.
Zhou
,
K.
,
Lin
,
Q.
,
Hu
,
H.
,
Hu
,
H.
, and
Song
,
L.
,
2016
, “
The Ignition Characteristics and Combustion Processes of the Single Coal Slime Particle Under Different Hot Co-Flow Conditions in N2/O2 Atmosphere
,”
Energy
,
163
, pp.
173
184
.
44.
Ponzio
,
A.
,
Senthoorselvan
,
S.
,
Yang
,
W.
,
Blasiak
,
W.
, and
Eriksson
,
O.
,
2008
, “
Ignition of Single Coal Particles in High-Temperature Oxidizers With Various Oxygen Concentrations
,”
Fuel
,
87
(
6
), pp.
974
987
.
45.
Kijo-Kleczkowska
,
A.
,
S´roda
,
K.
,
Kosowska-Golachowska
,
M.
,
Musiał
,
T.
, and
Wolski
,
K.
,
2016
, “
Combustion of Pelleted Sewage Sludge With Reference to Coal and Biomass
,”
Fuel
,
170
, pp.
141
160
.
46.
Williams
,
A.
,
Backreedy
,
R.
,
Habib
,
R.
,
Jones
,
J. M. M.
, and
Pourkashanian
,
2002
, “
Modeling Coal Combustion: The Current Position
,”
Fuel
,
81
(
5
), pp.
605
618
.
47.
Ponzio
,
A.
,
Yang
,
W.
, and
Blasiak
,
W.
,
2007
, “
Combustion of Solid Fuels Under the Conditions of High Temperature and Various Oxygen Concentrations
,”
International Conference on Power Engineering
, Hammamet, Tunisia, Nov. 4–6, pp.
23
27
.
48.
Yang
,
Y.
,
Ryu
,
C.
,
Khor
,
A.
,
Yates
,
N.
,
Sharifi
,
V.
, and
Swithenbank
,
J.
,
2005
, “
Effect of Fuel Properties on Biomass Combustion—Part II: Modelling Approach; Identification of the Controlling Factors
,”
Fuel
,
84
(
16
), pp.
2116
2130
.
49.
Bhuiyan
,
A. A.
, and
Naser
,
J.
,
2014
, “
Effect of Recycled Ratio on Heat Transfer Performance of Coal Combustion in a 0. 5 MWth Combustion Test Facility
,”
19th Australasian Fluid Mechanics Conference
, Melbourne, Australia, Dec. 8–11, pp. 1–4.https://people.eng.unimelb.edu.au/imarusic/proceedings/19/33.pdf
50.
Bhuiyan
,
A. A.
, and
Naser
,
J.
,
2015
, “
Numerical Modelling of Oxy Fuel Combustion, the Effect of Radiative and Convective Heat Transfer and Burnout
,”
Fuel
,
139
, pp.
268
284
.
51.
Ryu
,
C.
,
Bin Yang
,
Y.
,
Khor
,
A.
,
Yates
,
N. E.
,
Sharifi
,
V. N.
, and
Swithenbank
,
J.
,
2006
, “
Effect of Fuel Properties on Biomass Combustion—Part I: Experiments; Fuel Type, Equivalence Ratio and Particle Size
,”
Fuel
,
85
(
7–8
), pp.
1039
1046
.
52.
Yang
,
Y. B.
,
Yamauchi
,
H.
,
Nasserzadeh
,
V.
, and
Swithenbank
,
J.
,
2003
, “
Effects of Fuel Devolatilization on the Combustion of Wood Chips and Incineration of Simulated Municipal Solid Wastes in a Packed Bed
,”
Fuel
,
82
(
18
), pp.
2205
2221
.
53.
Babrauskas
,
V.
,
2002
, “
Ignition of Wood: A Review of the State of the Art
,”
Fire Prot. Eng.
,
12
(
3
), pp.
163
189
.
54.
Olsson
,
M.
,
2006
, “
Wheat Dust and Peat for Fuel Pellets—Organic Compounds From Combustion
,”
Biomass Bioenergy
,
30
(
6
), pp.
555
564
.
55.
Kallis
,
K. X.
,
Pellegrini Susini
,
G. A.
, and
Oakey
,
J. E.
,
2013
, “
A Comparison Between Miscanthus and Bioethanol Waste Pellets and Their Performance in a Downdraft Gasifier
,”
Appl. Energy
,
101
, pp.
333
340
.
56.
Pronobis
,
M.
,
2005
, “
Evaluation of the Influence of Biomass Co-Combustion on Boiler Furnace Slagging by Means of Fusibility Correlations
,”
Biomass Bioenergy
,
28
(
4
), pp.
375
383
.
57.
Bapat
,
D. W.
,
Kulkarni
,
S. V.
, and
Bhandarkar
,
V. P.
,
1997
, “
Design and Operating Experience on Fluidized Bed Boiler Burning Biomass Fuels With High Alkali Ash
,”
14th International Conference on Fluidized Bed Combustion
, Vancouver, BC, Canada, pp.
165
174
.
You do not currently have access to this content.