Low grade waste heat recovery presents an opportunity to utilize typically wasted energy to reduce overall energy consumption and improve system efficiencies. In this work, the technoeconomic performance of a turbocompression cooling system (TCCS) driven by low grade waste heat in the engine coolant of a large marine diesel generator set is investigated. Five different working fluids were examined to better understand the effects of fluid characteristics on system performance: R134a, R245fa, R1234ze(E), R152a, and R600a. A coupled thermodynamic, heat exchanger, and economic simulation was developed to calculate the simple payback period of the waste heat recovery system, which was minimized using a search and find optimization routine with heat exchanger effectiveness as the optimization parameter. A sensitivity study was performed to understand which heat exchanger effectiveness had the largest impact on payback period. Of the five working fluids examined, a TCCS with R152a as the working fluid had the lowest payback period of 1.46 years with an initial investment of $181,846. The R152a system was most sensitive to the two-phase region of the power cycle condenser. The R1234ze(E) system provided the largest return on investment over a ten year lifetime of $1,399,666.

References

References
1.
Little
,
A. B.
, and
Garimella
,
S.
,
2011
, “
Comparative Assessment of Alternative Cycles for Waste Heat Recovery and Upgrade
,”
Energy
,
36
(
7
), pp.
4492
4504
.
2.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2003
, “
Experimental Investigation on the Thermal Stability of Some New Zero ODP Refrigerants
,”
Int. J. Refrig.
,
26
(
1
), pp.
51
58
.
3.
Ito
,
M.
,
Dang
,
C.
, and
Hihara
,
E.
,
2014
, “
Thermal Decomposition of Lower-GWP Refrigerants
,”
International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 14–17, p.
1538
.
4.
Al-Tahaineh
,
H.
,
Frihat
,
M.
, and
Al-Rashdan
,
M.
,
2013
, “
Exergy Analysis of a Single-Effect Water-Lithium Bromide Absorption Chiller Powered by Waste Energy Source for Different Cooling Capacities
,”
Energy Power
,
3
(
6
), pp.
106
118
.
5.
Manu
,
S.
, and
Chandrashekar
,
T. K.
,
2016
, “
A Simulation Study on Performance Evaluation of Single-Stage LiBr–H2O Vapor Absorption Heat Pump for Chip Cooling
,”
Int. J. Sustainable Built Environ.
,
5
(
2
), pp.
370
386
.
6.
de Vega
,
M.
,
Almendros-Ibañez
,
J. A.
, and
Ruiz
,
G.
,
2006
, “
Performance of a LiBr-Water Absorption Chiller Operating With Plate Heat Exchangers
,”
Energy Convers. Manage
,
47
(
18–19
), pp.
3393
3407
.
7.
Jakob
,
U.
,
Eicker
,
U.
,
Schneider
,
D.
,
Taki
,
A. H.
, and
Cook
,
M. J.
,
2008
, “
Simulation and Experimental Investigation Into Diffusion Absorption Cooling Machines for Air-Conditioning Applications
,”
Appl. Therm. Eng.
,
28
(
10
), pp.
1138
1150
.
8.
González-Gil
,
A.
,
Izquierdo
,
M.
,
Marcos
,
J. D.
, and
Palacios
,
E.
,
2011
, “
Experimental Evaluation of a Direct Air-Cooled Lithium Bromide-Water Absorption Prototype for Solar Air Conditioning
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3358
3368
.
9.
Ge
,
Y. T.
,
Tassou
,
S. A.
, and
Chaer
,
I.
,
2009
, “
Modelling and Performance Evaluation of a Low-Temperature Ammonia-Water Absorption Refrigeration System
,”
Int. J. Low-Carbon Technol.
,
4
(
2
), pp.
68
77
.
10.
Le Lostec
,
B.
,
Galanis
,
N.
, and
Millette
,
J.
,
2012
, “
Experimental Study of an Ammonia-Water Absorption Chiller
,”
Int. J. Refrig.
,
35
(
8
), pp.
2275
2286
.
11.
Ouadha
,
A.
, and
El-Gotni
,
Y.
,
2013
, “
Integration of an Ammonia-Water Absorption Refrigeration System With a Marine Diesel Engine: A Thermodynamic Study
,”
Procedia Comput. Sci.
,
19
, pp.
754
761
.
12.
Chua
,
H. T.
,
Ng
,
K. C.
,
Malek
,
A.
,
Kashiwagi
,
T.
,
Akisawa
,
A.
, and
Saha
,
B. B.
,
2001
, “
Multi-Bed Regenerative Adsorption Chiller - Improving the Utilization of Waste Heat and Reducing the Chilled Water Outlet Temperature Fluctuation
,”
Int. J. Refrig.
,
24
(
2
), pp.
124
136
.
13.
Douss
,
N.
, and
Meunier
,
F.
,
1989
, “
Experimental Study of Cascading Adsorption Cycles
,”
Chem. Eng. Sci.
,
44
(
2
), pp.
225
235
.
14.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2005
, “
Thermoeconomic Optimization of a LiBr/H2O Absorption Chiller Using Structural Method
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
119
124
.
15.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2006
, “
Thermoeconomic Evaluation and Optimization of an Aqua-Ammonia Vapour-Absorption Refrigeration System
,”
Int. J. Refrig.
,
29
(
1
), pp.
47
59
.
16.
Kizilkan
,
Ö.
,
Şencan
,
A.
, and
Kalogirou
,
S. A.
,
2007
, “
Thermoeconomic Optimization of a LiBr Absorption Refrigeration System
,”
Chem. Eng. Process. Process Intensif.
,
46
(
12
), pp.
1376
1384
.
17.
Kubota
,
M.
,
Ueda
,
T.
,
Fujisawa
,
R.
,
Kobayashi
,
J.
,
Watanabe
,
F.
,
Kobayashi
,
N.
, and
Hasatani
,
M.
,
2008
, “
Cooling Output Performance of a Prototype Adsorption Heat Pump With Fin-Type Silica Gel Tube Module
,”
Appl. Therm. Eng.
,
28
(
2–3
), pp.
87
93
.
18.
Jiangzhou
,
S.
,
Wang
,
R. Z.
,
Lu
,
Y. Z.
,
Xu
,
Y. X.
, and
Wu
,
J. Y.
,
2005
, “
Experimental Study on Locomotive Driver Cabin Adsorption Air Conditioning Prototype Machine
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1655
1665
.
19.
Chua
,
H. T.
,
Ng
,
K. C.
,
Wang
,
W.
,
Yap
,
C.
, and
Wang
,
X. L.
,
2004
, “
Transient Modeling of a Two-Bed Silica Gel-Water Adsorption Chiller
,”
Int. J. Heat Mass Transfer
,
47
(
4
), pp.
659
669
.
20.
Zhang
,
L. Z.
,
2000
, “
Design and Testing of an Automobile Waste Heat Adsorption Cooling System
,”
Appl. Therm. Eng.
,
20
(
1
), pp.
103
114
.
21.
Wang
,
R. Z.
,
2008
, “
Efficient Adsorption Refrigerators Integrated With Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
4
), pp.
317
326
.
22.
Alahmer
,
A.
,
Wang
,
X.
,
Al-Rbaihat
,
R.
,
Amanul Alam
,
K. C.
, and
Saha
,
B. B.
,
2016
, “
Performance Evaluation of a Solar Adsorption Chiller Under Different Climatic Conditions
,”
Appl. Energy
,
175
, pp.
293
304
.
23.
Chorowski
,
M.
, and
Pyrka
,
P.
,
2015
, “
Modelling and Experimental Investigation of an Adsorption Chiller Using Low-Temperature Heat From Cogeneration
,”
Energy
,
92
, pp.
221
229
.
24.
Huang
,
B. J.
,
Chang
,
J. M.
,
Petrenko
,
V. A.
, and
Zhuk
,
K. B.
,
1998
, “
A Solar Ejector Cooling System Using Refrigerant R141b
,”
Sol. Energy
,
64
(
4–6
), pp.
223
226
.
25.
Ma
,
X.
,
Zhang
,
W.
,
Omer
,
S. A.
, and
Riffat
,
S. B.
,
2010
, “
Experimental Investigation of a Novel Steam Ejector Refrigerator Suitable for Solar Energy Applications
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1320
1325
.
26.
Murthy
,
S. S.
,
Balasubramanian
,
R.
, and
Murthy
,
M. V. K.
,
1991
, “
Experiments on Vapour Jet Refrigeration System Suitable for Solar Energy Applications
,”
Renewable Energy
,
1
(
5–6
), pp.
757
768
.
27.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Exergy Analysis, Parametric Analysis and Optimization for a Novel Combined Power and Ejector Refrigeration Cycle
,”
Appl. Therm. Eng
,
29
(
10
), pp.
1983
1990
.
28.
Alexis
,
G. K.
,
2005
, “
Exergy Analysis of Ejector-Refrigeration Cycle Using Water as Working Fluid
,”
Int. J. Energy Res
,
29
(
2
), pp.
95
105
.
29.
Xia
,
J.
,
Wang
,
J.
,
Lou
,
J.
,
Zhao
,
P.
, and
Dai
,
Y.
,
2016
, “
Thermo-Economic Analysis and Optimization of a Combined Cooling and Power (CCP) System for Engine Waste Heat Recovery
,”
Energy Convers. Manage.
,
128
, pp.
303
316
.
30.
Garousi Farshi
,
L.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2013
, “
Exergoeconomic Comparison of Double Effect and Combined Ejector-Double Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
103
, pp.
700
711
.
31.
Wang
,
H.
,
Peterson
,
R.
,
Harada
,
K.
,
Miller
,
E.
,
Ingram-Goble
,
R.
,
Fisher
,
L.
,
Yih
,
J.
, and
Ward
,
C.
,
2011
, “
Performance of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Heat Activated Cooling
,”
Energy
,
36
(
1
), pp.
447
458
.
32.
Vélez
,
F.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Antolín
,
G.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2012
, “
A Technical, Economical and Market Review of Organic Rankine Cycles for the Conversion of Low-Grade Heat for Power Generation
,”
Renewable Sustainable Energy Rev
,
16
(
6
), pp.
4175
4189
.
33.
Yue
,
C.
,
You
,
F.
, and
Huang
,
Y.
,
2016
, “
Thermal and Economic Analysis of an Energy System of an ORC Coupled With Vehicle Air Conditioning
,”
Int. J. Refrig.
,
64
, pp.
152
167
.
34.
Gibson
,
S. C.
,
Young
,
D.
, and
Bandhauer
,
T. M.
,
2017
, “
Technoeconomic Optimization of Turbo-Compression Cooling Systems
,” International Mechanical Engineering Congress and Exposition, Tampa Bay, FL, pp. 1–17.
35.
Bandhauer
,
T. M.
, and
Garland
,
S. D.
,
2016
, “
Dry Air Turbo-Compression Cooling
,”
ASME
Paper No. POWER2016-59152.
36.
Klein
,
S.
, and
Alvarado
,
F.
,
2002
, “
Engineering Equation Solver
,” F-Chart Software, Box, Madison, WI.
37.
Nichols
,
K. E.
,
How to Select Turbomachinery for Your Application
,
Barber-Nichols
,
Arvada, CO
.
38.
Garland
,
S. D.
,
Bandhauer
,
T. M.
, and
Noall
,
J.
,
2017
, “
Performance Model of a Waste Heat Driven Turbo-Compression Chiller
,” Second Thermal and Fluids Engineering Conference, Las Vegas, NV, Paper No. TFEC-IWHT2017-18302.
39.
Kaelin
,
J.
,
2015
, “
Plate and Frame Heat Exchangers Explained
,” Thermaxx Jackets, West Haven, CT, accessed Dec. 1, 2017, https://www.thermaxxjackets.com/plate-and-frame-heat-exchangers-explained/
40.
Instrumentation and Process Control
,
2011
, “
Advantages and Disadvantages of Plate Heat Exchangers
,” accessed Dec 1, 2017, http://instrumentations.blogspot.com/2011/04/advantages-and-disadvantages-of-plate.html
41.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Danvers, MA
.
42.
Sinnott
,
R. K.
,
2005
,
Chemical Engineering Design
, Butterworth-Heinemann, Oxford, UK, pp.
756
764
.
43.
Kuo
,
W. S.
,
Lie
,
Y. M.
,
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2005
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5205
5220
.
44.
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2002
, “
Saturated Flow Boiling Heat Transfer and Pressure Drop of Refrigerant R-410A in a Vertical Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1033
1044
.
45.
Thonon
,
B.
,
Vidil
,
R.
, and
Marvillet
,
C.
,
1995
, “
Recent Research and Developments in Plate Heat Exchangers
,”
J. Enhanced Heat Transfer
,
2
(
1–2
), pp.
149
155
.
46.
Wanniarachchi
,
A. S.
,
Ratman
,
U.
,
Tilton
,
B. E.
, and
Dutta-Roy
,
K.
,
1995
, “
Approximate Correlations for Chevron-Type Plate Heat Exchangers
,”
30th National Heat Transfer Conference
, Portland, OR, Aug. 6–8, pp.
145
151
.
47.
Rosenblad
,
G.
, and
Kullendorff
,
A.
,
1975
, “
Estimating Heat Transfer Rates From Mass Transfer Studies on Plate Heat Exchanger Surfaces
,”
Wärme Stoffübertragung
,
8
(
3
), pp.
187
191
.
48.
Heavner
,
H.
,
Kumar
,
L.
, and
Wanniarachchi
,
A. S.
,
1993
, “
Performance of an Industrial Plate Heat Exchanger: Effect of Chevron Angle
,”
AIChE Symposium Series Heat Transfer
, Atlanta, Georgia, Aug., pp. 262–267.
49.
Khan
,
T. S.
,
Khan
,
M. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2010
, “
Experimental Investigation of Single Phase Convective Heat Transfer Coefficient in a Corrugated Plate Heat Exchanger for Multiple Plate Configurations
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1058
1065
.
50.
Rajasekaran
,
S.
, and
Raj
,
W. C.
, “
Comparative Study of Nusselt Number for a Single Phase Fluid Flow Using Plate Heat Exchanger
,”
Therm. Sci.
,
20
(
Suppl. 4
), pp.
929
935
.
51.
Engineering ToolBox, 2004, “
Minor Loss Coefficients in Pipe and Tube Components
,” accessed Dec. 1, 2017, http://www.engineeringtoolbox.com/minor-loss-coefficients-pipes-d_626.html
52.
Perry
,
R. H.
,
1997
,
Chemical Engineers' Handbook
,
McGraw-Hill
, New York.
53.
Brown
,
T.
,
2007
,
Engineering Economics and Economic Design for Process Engineers
,
CRC Press
,
Boca Raton, FL
.
54.
Vatavuk
,
W. M.
,
2002
, “
Updating the CE Plant Cost Index
,”
Chem. Eng.-Eng. Pract.
, (epub).http://www.chemengonline.com/Assets/File/CEPCI_1_01-2002.pdf
55.
Garland
,
S. D.
,
Bandhauer
,
T. M.
,
Grauberger
,
A.
,
Simon
,
J.
,
Young
,
D.
,
Fuller
,
R.
,
Noall
,
J.
,
Shull
,
J.
,
Sami
,
R. V.
,
Reinke
,
M. J.
, and
Larry
,
W.
,
2018
, “
Experimental Investigation of a Waste Heat Driven Turbo-Compression Chiller
,”
Third Thermal and Fluids Engineering Conference
, Fort Lauderdale, FL, pp. 7–10.
56.
Couper
,
J.
,
Penney
,
R.
,
Fair
,
J.
, and
Walas
,
S.
,
1990
,
Chemical Process Equipment
,
Butterworth-Heinemann
,
Newton, MA
.
57.
Carrier
,
2018
, “
Water-Cooled Chillers
,” United Technologies Corporation, Farmington, CT, accessed Dec. 1, 2017, https://www.carrier.com/commercial/en/us/products/chillers-components/water-cooled-chillers/
58.
Carrier,
2018
, “
Air-Cooled Chillers
,” United Technologies Corporation, Farmington, CT, accessed Dec. 1, 2017, https://www.carrier.com/commercial/en/us/products/chillers-components/air-cooled-chillers/
59.
Airedale
,
2018
, “
Air Condition Chillers
,” Airedale Air Conditioning, Leeds, UK, accessed Dec. 1, 2017, http://airedale.com/web/Products/Chillers.htm
60.
Achaichia, N.
, 2011, “
Working Fluid Developments for HT Heat Pumps and ORC Systems
,” Renewable Energy, Heating and Cooling Applications, Edinburgh, Scotland, Jan. 21, pp. 1–9.
61.
Bu
,
X. B.
,
Li
,
H. S.
, and
Wang
,
L. B.
,
2013
, “
Performance Analysis and Working Fluids Selection of Solar Powered Organic Rankine-Vapor Compression Ice Maker
,”
Sol. Energy
,
95
, pp.
271
278
.
62.
Kim
,
K. H.
, and
Perez-Blanco
,
H.
,
2015
, “
Performance Analysis of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Power and Refrigeration Cogeneration
,”
Appl. Therm. Eng
,
91
, pp.
964
974
.
63.
Li
,
H.
,
Bu
,
X.
,
Wang
,
L.
,
Long
,
Z.
, and
Lian
,
Y.
,
2013
, “
Hydrocarbon Working Fluids for a Rankine Cycle Powered Vapor Compression Refrigeration System Using Low-Grade Thermal Energy
,”
Energy Build.
,
65
, pp.
167
172
.
You do not currently have access to this content.