This paper presents a numerical study of the magnetohydrodynamics, natural convection, and thermodynamic irreversibilities in an I-shape enclosure, filled with CuO-water nanofluid and subject to a uniform magnetic field. The lateral walls of the enclosure are maintained at different but constant temperatures, while the top and bottom surfaces are adiabatic. The Brownian motion of the nanoparticles is taken into account and an extensive parametric study is conducted. This involves the variation of Rayleigh and Hartmann numbers, and the concentration of nanoparticles and also the geometrical specifications of the enclosure. Further, the behaviors of streamlines and isotherms under varying parameters are visualized. Unlike that in other configurations, the rate of heat transfer in the I-shaped enclosure appears to be highly location dependent and convection from particular surfaces dominates the heat transfer process. It is shown that interactions between the magnetic field and natural convection currents in the investigated enclosure can lead to some peculiarities in the thermal behavior of the system. The results also demonstrate that different parts of the enclosure may feature significantly different levels of heat transfer sensitivity to the applied magnetic field. Further, the analysis of entropy generation indicates that the irreversibility of the system is a strong function of the geometrical parameters and that the variations in these parameters can minimize the total generation of entropy. This study clearly shows that ignoring the exact shape of the enclosure may result in major errors in the prediction of heat transfer and second law performances of the system.

References

References
1.
Schoch
,
R. B.
,
Han
,
J.
, and
Renaud
,
P.
,
2008
, “
Transport Phenomena in Nanofluids
,”
Rev. Mod. Phys.
,
80
(
3
), p.
839
.
2.
Godson
,
L. B.
,
Raja
,
D.
,
Lal
,
M.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids-An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.
3.
Efstathios
,
E.
, and
Michaelides
,
S.
,
2014
,
Nanofluidics- Thermodynamic and Transport Properties
,
Springer International Publishing
,
Cham, Switzerland
.
4.
Vadasz
,
P.
,
2006
, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
,
128
(
5
), pp.
465
477
.
5.
Torabi
,
M.
,
Dickson
,
C.
, and
Karimi
,
N.
,
2016
, “
Theoretical Investigation of Entropy Generation and Heat Transfer by Forced Convection of Copper-Water Nanofluid in a Porous Channel-Local Thermal Non-Equilibrium and Partial Filling Effects
,”
J. Powder Tech.
,
301
, pp.
234
254
.
6.
Dickson
,
C.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2016
, “
First and Second Law Analysis of Nanofluid Convection Through a Porous Channel-The Effects of Partial Filling and Internal Heat Sources
,”
J. Appl. Therm. Eng.
,
103
, pp.
459
480
.
7.
Torabi
,
M.
,
Zhang
,
K.
,
Karimi
,
N.
, and
Peterson
,
G. P.
,
2016
, “
Entropy Generation in Thermal Systems With Solid Structures-a Concise Review
,”
Int. J. Heat Mass Transfer
,
97
, pp.
917
931
.
8.
Mahian
,
O.
,
Kainifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.
9.
Lomascolo
,
M.
,
Colangelo
,
G.
,
Milanese
,
M.
, and
De Risi
,
A.
,
2015
, “
Review of Heat Transfer in Nanofluids: Conductive, Convective and Radiative Experimental Results
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
1182
1198
.
10.
Ebrahimi
,
K.
,
Jones
,
G. F.
, and
Fleischer
,
A. S.
,
2014
, “
A Review of Data Center Cooling Technology, Operating Conditions and the Corresponding Low-Grade Waste Heat Recovery Opportunities
,”
J. Renewable Sustainable Energy Rev.
,
31
, pp.
622
638
.
11.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2010
, “
Brownian Motion of Nanoparticles in a Triangular Enclosure With Natural Convection
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
931
940
.
12.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
13.
Kefayati
,
G. H. R.
,
Hosseinizadeh
,
S. F.
,
Gorji
,
M.
, and
Sajjadi
,
H.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection in Tall Enclosures Using Water/SiO2 Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
798
805
.
14.
Lai
,
F.
, and
Yang
,
H. Y.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection Heat Transfer of Al2O3/Water Nanofluids in a Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1930
1941
.
15.
Mahmoudi
,
A. H.
,
Shahi
,
M.
,
Raouf
,
A. H.
, and
Ghasemian
,
A.
,
2010
, “
Numerical Study of Natural Convection Cooling of Horizontal Heat Source Mounted in a Square Cavity Filled With Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1135
1141
.
16.
Chandrasekhar
,
S.
,
2013
,
Hydrodynamic and Hydromagnetic Stability
,
Courier Corporation
, Chelmsford, MA.
17.
Hamad
,
M. A. A.
,
Pop
,
I.
, and
Ismail
,
A. I. M.
,
2011
, “
Magnetic Field Effects on Free Convection Flow of a Nanofluid past a Vertical Semi-Infinite Flat Plate
,”
Nonlinear Anal.: Real World Appl.
,
12
(
3
), pp.
1338
1346
.
18.
Gavili
,
A.
,
Zabihi
,
F.
,
Isfahani
,
T. D.
, and
Sabbaghzadeh
,
J.
,
2012
, “
The Thermal Conductivity of Water Base Ferrofluids Under Magnetic Field
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
94
98
.
19.
Hayat
,
T.
,
Waqas
,
M.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2016
, “
A Model of Solar Radiation and Joule Heating in Magnetohydrodynamic (MHD) Convective Flow of Thixotropic Nanofluid
,”
J. Mol. Liq.
,
215
, pp.
704
710
.
20.
Guerrero Martinez
,
F.
,
Younger
,
P.
,
Karimi
,
N.
, and
Kyriakis
,
S.
,
2017
, “
Three-Dimensional Numerical Simulations of Free Convection in a Layered Porous Enclosure
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1005
1013
.
21.
Mahmoudi, H. A.
,
Pop, L.
, and
Shahi, M.
, 2012, “
Effect of Magnetic Field on Natural Convection in a Triangular Eclosure Flled with Nanofluid
,”
Int. J. Thermal Sci.
,
59
, pp. 126–140.
22.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
23.
Kefayati
,
G. H. R.
,
2013
, “
Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Cavity With Sinusoidal Temperature Distribution
,”
Powder Technol.
,
243
, pp.
171
–1
83
.
24.
Kefayati
,
G. H. R.
,
2015
, “
FDLBM Simulation of Entropy Generation Due to Natural Convection in an Enclosure Filled With non-Newtonian Nanofluid
,”
Powder Technol.
,
273
, pp.
176
–1
90
.
25.
Kefayati
,
G. H. R.
,
2015
, “
FDLBM Simulation of Mixed Convection in a Lid-Driven Cavity Filled With Non-Newtonian Nanofluid in the Presence of Magnetic Field
,”
Int. J. Therm. Sci.
,
95
, pp.
29
46
.
26.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Nanofluid Convective Heat Transfer Using Semi Analytical and Numerical Approaches: A Review
,”
J. Taiwan Inst. Chem. Eng.
,
65
, pp.
43
77
.
27.
Sanokawa
,
K.
,
1979
, “
Natural Confection of Mercury in a Magnetic Field Parallel to the. Gravity
,”
ASME J. Heat Transfer
,
101
(
2
), pp.
227
232
.
28.
Ozoe
,
H.
, and
Okada
,
K.
,
1989
, “
The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1939
1954
.
29.
Rudraiah
,
N.
,
1995
, “
Effect of a Magnetic Field on Free Convection in a Rectangular Enclosure
,”
Int. J. Eng. Sci.
,
33
(
8
), pp.
1075
1084
.
30.
Pirmohammadi
,
M.
,
Ghassemi
,
M.
, and
Hamedi
,
M.
,
2010
, “
Effect of Inclination Angle on Magneto-Convection Inside a Tilted Enclosure
,”
IEEE Trans. Magn.
,
46
(
6
), pp.
2489
2492
.
31.
Chamkha
,
A. J.
,
2002
, “
Hydromagnetic Combined Convection Flow in a Vertical Lid-Driven Cavity With Internal Heat Generation or Absorption
,”
Numer. Heat Transfer-Part A: Appl.
,
41
(
5
), pp.
529
546
.
32.
Guerrero Martinez
,
F.
,
Younger
,
P.
, and
Karimi
,
N.
,
2016
, “
Three-Dimensional Numerical Model of Free Convection in Sloping Porous Enclosures
,”
Int. J. Heat Mass Transfer
,
98
, pp.
257
267
.
33.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D. D.
, and
Soleimani
,
S.
,
2014
, “
Natural Convection Heat Transfer in a Cavity With Sinusoidal Wall Filled With CuO–Water Nanofluid in Presence of Magnetic Field
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
1
), pp.
40
49
.
34.
Ghasemi
,
B.
,
Aminossadati
,
S. M.
, and
Raisi
,
A.
,
2011
, “
Magnetic Field Effect on Natural Convection in Nanofluid- Filled Square Enclosure
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1748
1756
.
35.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
,
Ganji
,
D. D.
, and
Soleimani
,
S.
,
2014
, “
MHD Natural Convection in a Nanofluid Filled Inclined Enclosure With Sinusoidal Wall Using CVFEM
,”
Neural Comput. Appl.
,
24
(
3–4
), pp.
873
–8
82
.
36.
Alizadeh
,
R.
,
Karimi
,
N.
,
Arjmandzadeh
,
R.
, and
Mehdizadeh
,
A.
,
2018
, “
Mixed Convection and Thermodynamic Irreversibilities in MHD Nanofluid Stagnation-Point Flows Over a Cylinder Embedded in Porous Media
,”
J. Therm. Anal. Calorim.
, (epub).
37.
Turkyilmazoglu
,
M.
,
2016
, “
Performance of Direct Absorption Solar Collector With Nanofluid Mixture
,”
Energy Convers. Manage.
,
114
, pp.
1
10
.
38.
Turkyilmazoglu
,
M.
,
2017
, “
Condensation of Laminar Film Over Curved Vertical Walls Using Single and Two-Phase Nanofluid Models
,”
Eur. J. Mech.-B/Fluids
,
65
, pp.
184
191
.
39.
Turkyilmazoglu
,
M.
,
2017
, “
Magnetohydrodynamic Two-Phase Dusty Fluid Flow and Heat Model Over Deforming Isothermal Surfaces
,”
Phys. Fluids
,
29
(
1
), p.
013302
.
40.
Cortell
,
R.
,
2005
, “
A Note on Magnetohydrodynamic Flow of a Power-Law Fluid Over a Stretching Sheet
,”
Appl. Math. Comput.
,
168
(
1
), pp.
557
566
.
41.
Fang
,
T.
,
Zhang
,
J.
, and
Yao
,
S.
,
2009
, “
Slip MHD Viscous Flow Over a Stretching Sheet–an Exact Solution
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
11
), pp.
3731
3737
.
42.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
43.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
44.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
45.
Hajialigal
,
N.
,
Fattahi
,
A.
,
Ahmadi
,
M. H.
,
Qomi
,
M. E.
, and
Kakoli
,
E.
,
2015
, “
MHD Mixed Convection and Entropy Generation in a 3D Microchannel Using Al2O3-Water Nanouid
,”
Taiwan Inst. Chem. Eng.
,
46
, pp.
30
42
.
46.
Mehrez
,
Z.
,
Cafsi
,
A. E.
,
Belghith
,
A.
, and
Quere
,
P. L.
,
2015
, “
MHD Effects on Heat Transfer and Entropy Generation of Nanofluid Flow in an Open Cavity
,”
J. Magn. Magn. Mater.
,
374
, pp.
214
224
.
47.
Kefayati
,
G. H. R.
, and
Che Sidik
,
N. A.
,
2017
, “
Simulation of Natural Convection and Entropy Generation of Non-Newtonian Nanofluid in an Inclined Cavity Using Buongiorno's Mathematical Model (Part II, Entropy Generation)
,”
Powder Technol.
,
305
, pp.
679
703
.
48.
Fersadou
,
I.
,
Kahalerras
,
H.
, and
Ganaoui
,
M. E.
,
2015
, “
MHD Mixed Convection and Entropy Generation of a Nanofluid in a Vertical Porous Channel
,”
Comp. Fluids
,
121
, pp.
164
179
.
49.
Sheremet
,
M. A.
,
Pop
,
I.
, and
Rahman
,
M. M.
,
2015
, “
Three-Dimensional Natural Convection in a Porous Enclosure Filled With a Nanofluid Using Buongiorno's Mathematical Model
,”
Int. J. Heat Mass Transfer
,
82
, pp.
396
405
.
50.
Ashorynejad
,
H. R.
,
Mohamad
,
A. A.
, and
Sheikholeslami
,
M.
,
2013
, “
Magnetic Field Effects on Natural Convection Flow of a Nanofluid in a Horizontal Cylindrical Annulus Using Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
64
, pp.
240
–2
50
.
51.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Karimi
,
N.
, and
Alizadeh
,
A.
,
2018
, “
Transient Analysis of the Interactions Between a Heat Transferring, Radial Stagnation Flow and a Rotating cylinder-Magnetohydrodynamic and Non-Uniform Transpiration Effects
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051017
.
52.
Guerrero Martinez
,
F.
,
Karimi
,
N.
, and
Ramos
,
E.
,
2018
, “
Numerical Modeling of Multiple Steady-State Convective Modes in Tilted Porous Medium Heated From below
,”
Int. Commun. Heat Mass Transfer
,
92
, pp.
64
72
.
53.
Bouchoucha
,
A. M.
,
Bessaïh
,
R.
,
Oztop
,
H. F.
,
Al-Salem
,
K.
, and
Bayrak
,
F.
,
2017
, “
Natural Convection and Entropy Generation in a Nanofluid Filled Cavity With Thick Bottom Wall: Effects of Non-Isothermal Heating
,”
Int. J. Mech. Sci.
,
26
(C), pp. 95–105.
54.
Aybar
,
H. S.
,
Sharifpur
,
M.
,
Azizian
,
R.
,
Mehrabi
,
M.
, and
Meyer
,
J. P.
,
2015
, “
A Review of Thermal Conductivity Models for Nanofluids
,”
J. Heat Transfer Eng.
,
36
(
13
), pp.
1085
1110
.
55.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2005
, “
Laminar Nanofluid in Microheat-Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2652
2661
.
56.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
Chem. Phys.
,
20
(
4
), pp.
571
581
.
57.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.
58.
Maxwell
,
J.
,
1904
,
A Treatise on Electricity and Magnetism
,
2nd ed
,
Oxford University Press
,
Cambridge, UK
.
59.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
60.
Davis
,
G. D. V.
,
1983
, “
Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution
,”
Int. J. Numer. Meth. Fluid
,
3
(
3
), pp.
249
264
.
61.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
62.
Pirmohammadi,
M.
, and
Ghassemi
,
M.
,
2009
, “
Effect of Magnetic Field on Convection Heat Transfer Inside a Tilted Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
776
780
.
You do not currently have access to this content.