A two-dimensional (2D) numerical study is carried out to investigate the thermal performance of an impure phase-change material (PCM) in an equilateral triangular-shaped double pipe heat exchanger. To tackle the irregular boundaries, a nonorthogonal body-fitted coordinate (BFC) transformation technique is employed. The nondimensional transformed curvilinear conservation equations for mass, momentum, and energy are written in terms of physical variables and they are solved using a control-volume based finite difference method on a staggered grid arrangement. The developed model is then used to study the effects of the inner tube wall temperature, the initial temperature of the solid PCM, and the shape, as well as the position of the inner tube in the annulus on the melting characteristics, and cumulatively stored energy. Various quantities such as average Nusselt numbers over the inner tube surface, the total and complete melt fractions, and the latent and total stored energies all as a function of the melting time are reported. A correlation for the average Nusselt number on the inner tube wall is also provided. The numerical results show that the shape and the placement of the inner tube are crucial for the efficient design of a latent heat thermal energy storage (LHTES) system. The storage of energy is greatly influenced by the change of the inner tube wall temperature compared to the change of initial solid PCM temperature.

References

References
1.
Chineke
,
T.
, and
Igwiro
,
E.
,
2008
, “
Urban and Rural Electrification: Enhancing the Energy Sector in Nigeria Using Photovoltaic Technology
,”
Afr. J. Sci. Technol.
,
9
(
1
), pp.
102
108
.
2.
Yang
,
Z.
,
Liu
,
J.
,
Baskaran
,
S.
,
Imhoff
,
H. C.
, and
Holladay
,
D. J.
,
2010
, “
Enabling Renewable Energy- and the Future Grid-With Advanced Electricity Storage—Energy Storage Technologies Overview
,”
JOM
,
62
(
9
), pp.
14
23
.
3.
Alabi
,
O. O.
,
2010
, “
An Investigation on Using GIS to Prospect for Renewable Energy in Nigeria
,” Ph.D. thesis, University of Missouri-Kansas City, Kanas.
4.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part 1: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.
5.
Verma
,
P.
,
Varun
., and
Singal
,
S.
,
K.
,
2008
, “
Review of Mathematical Modeling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material
,”
Renewable Sustainable Energy Rev.
,
12
(
4
), pp.
999
1031
.
6.
Morrison
,
D. J.
, and
Abdel-Khalik
,
S. I.
,
1978
, “
Effects of Phase-Change Energy Storage on the Performance of Air-Based and Liquid-Based Solar Heating Systems
,”
Sol. Energy
,
20
(
1
), pp.
57
67
.
7.
Ghoneim
,
A. A.
,
1989
, “
Comparison of Theoretical Models of Phase-Change and Sensible Heat Storage for Air and Water-Based Solar Heating Systems
,”
Sol. Energy
,
42
(
3
), pp.
209
220
.
8.
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
1997
, “
Finite-Element Analysis of Cyclic Heat Transfer in a Shell-and-Tube Latent Heat Energy Storage Exchanger
,”
Appl. Therm. Eng.
,
17
(
6
), pp.
583
591
.
9.
Halawa
,
E.
,
Bruno
,
F.
, and
Saman
,
W.
,
2005
, “
Numerical Analysis of a PCM Thermal Storage System With Varying Wall Temperature
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2592
2604
.
10.
Saman
,
W.
,
Bruno
,
F.
, and
Halawa
,
E.
,
2005
, “
Thermal Performance of PCM Thermal Storage Unit for a Roof Integrated Solar Heating System
,”
Sol. Energy
,
78
(
2
), pp.
341
349
.
11.
Tabassum
,
T.
,
2010
, “
A Numerical Study of a Double Pipe Latent Heat Thermal Energy Storage System
,”
M.E. thesis
, McGill University, Montreal, QC, Canada.http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1534845667797~903
12.
Wang
,
S.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2012
, “
Melting in Cylindrical Enclosures: Numerical Modeling and Heat Transfer Correlations
,”
Numer. Heat Transfer, Part A
,
61
(
11
), pp.
837
859
.
13.
Jesumathy
,
S. P.
,
Udayakumar
,
M.
, and
Suresh
,
S.
,
2012
, “
Heat Transfer Characteristics in Latent Heat Storage System Using Paraffin Wax
,”
J. Mech. Sci. Technol.
,
26
(
3
), pp.
959
965
.
14.
Tan
,
L.
,
Kwok
,
Y.
,
Date
,
A.
, and
Akbarzadeh
,
A.
, 2011, “
Numerical Study of PCM Melting Effects in Fin Type Rectangular Encapsulation Incorporating Aluminum Spiral Filters
,”
Int. Energy J.
,
12
(4), pp. 241–252.http://www.rericjournal.ait.ac.th/index.php/reric/article/view/929
15.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J. F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
184
.
16.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2013
, “
Numerical Study of PCM Solidification in a Triplex Tube Heat Exchanger With Internal and External Fins
,”
Int. J. Heat Mass Transfer
,
61
, pp.
684
695
.
17.
Shokouhmand
,
H.
, and
Kamkari
,
B.
,
2013
, “
Experimental Investigation on Melting Heat Transfer Characteristics of Lauric Acid in a Rectangular Thermal Storage Unit
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
201
212
.
18.
Sciacovelli
,
A.
,
Gagliardi
,
F.
, and
Verda
,
V.
,
2015
, “
Maximization of Performance of a PCM Latent Heat Storage System With Innovative Fins
,”
Appl. Energy
,
37
, pp.
707
715
.
19.
Agrawal
,
A.
, and
Sarviya
,
R. M.
,
2015
, “
Numerical Investigation of the Effects of Natural Convection on the Melting Process of Phase Change Material in Cylindrical Annulus
,”
Int. J. Res. Appl. Sci. Eng. Technol.
,
3
(
III
), pp.
853
861
.
20.
Seddegh
,
S.
,
Wang
,
X.
, and
Henderson
,
A. D.
,
2016
, “
A Comparative Study of Thermal Behaviour of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials
,”
Appl. Therm. Eng.
,
93
, pp.
348
358
.
21.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M. A.
,
2010
, “
Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
615
628
.
22.
Dutil
,
Y.
,
Rousse
,
D. R.
,
Salah
,
N. B.
,
Lassue
,
S.
, and
Zalewski
,
L.
,
2011
, “
A Review on Phase-Change Materials: Mathematical Modeling and Simulations
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
112
130
.
23.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
24.
Zhang
,
H.
,
Baeyens
,
J.
,
Caceres
,
G.
,
Degreve
,
J.
, and
Lv
,
Y.
,
2016
, “
Thermal Energy Storage: Recent Developments and Practical Aspects
,”
Prog. Energy Comb. Sci.
,
53
, pp.
1
40
.
25.
Khyad
,
A.
,
Samrani
,
H.
, and
Bargach
,
M. N.
,
2016
, “
State of the Art Review of Thermal Energy Storage Systems Using PCM Operating With Small Temperature Differences: Focus on Paraffin
,”
J. Mater. Environ. Sci.
,
7
(
4
), pp.
184
1192
.https://www.jmaterenvironsci.com/Document/vol7/vol7_N4/133-JMES-2276-2015-Khyad.pdf
26.
Cunha
,
J. P.
, and
Eames
,
P.
,
2016
, “
Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review
,”
Appl. Energy
,
177
, pp.
227
238
.
27.
Sleiti
,
A. K.
, and
Naimaster
,
E. J.
,
2016
, “
Application of Fatty Acid Based Phase-Change Material to Reduce Energy Consumption From Roofs of Buildings
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051003
.
28.
Tabassum
,
T.
,
Hasan
,
M.
, and
Begum
,
L.
,
2017
, “
2-D Numerical Investigation of Melting of an Impure PCM in the Arbitrary-Shaped Annuli
,”
Int. J. Therm. Sci.
,
114
, pp.
296
319
.
29.
Tabassum
,
T.
,
Hasan
,
M.
, and
Begum
,
L.
,
2017
, “
Modeling of Melting Characteristics of a Commercial Paraffin Wax in an Inverted Triangular Enclosure: Effect of Convective Heat Transfer Boundary Conditions
,”
Numer. Heat Transfer, Part A
,
71
(
4
), pp.
377
401
.
30.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4082
4091
.
31.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S. A.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1593
1615
.
32.
Tabassum
,
T.
,
2016
, “
Transient Latent Heat Thermal Energy Storage in Complex Annuli
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
33.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal in a Vertical Wall
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
174
181
.
34.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Melting Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part B
,
13
(
3
), pp.
297
318
.
35.
Viswanath
,
R.
, and
Jaluria
,
Y.
,
1993
, “
A Comparison of Different Solution Methodologies for Melting and Solidification Problems in Enclosures
,”
Numer. Heat Transfer, Part B
,
14
(
1
), pp.
77
105
.
36.
Desai
,
C. P.
, and
Vafai
,
K.
,
1993
, “
A Unified Examination of the Melting Process Within a Two-Dimensional Rectangular Cavity
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
1072
1075
.
37.
Joulin
,
A.
,
Younsi
,
Z.
,
Zalewski
,
L.
,
Rousse
,
D. R.
, and
Lassue
,
S.
,
2009
, “
A Numerical Study of the Melting of Phase Change Material Heated From a Vertical Wall of a Rectangular Enclosure
,”
Int. J. Comput. Fluid Dyn.
,
23
(
7
), pp.
553
566
.
38.
Viskanta
,
R.
,
1988
, “
Heat-Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
(
4B
), pp.
1205
1219
.
39.
Bathelt
,
A. G.
,
Viskanta
,
R.
, and
Leidenfrost
,
W.
,
1979
, “
Latent Heat-of-Fusion Energy Storage: Experiments on Heat Transfer From Cylinders During Melting
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
453
458
.
40.
Mahdaoui
,
M.
,
Kousksou
,
T.
,
Blancher
,
S.
,
AitMsaad
,
A.
,
El Rhafiki
,
T.
, and
Mouqallid
,
M.
,
2014
, “
A Numerical Analysis of Solid-Liquid Phase Change Heat Transfer Around a Horizontal Cylinder
,”
Appl. Math. Modell.
,
38
(
3
), pp.
1101
1110
.
You do not currently have access to this content.