Pressure oscillating tubes are core components of the gas wave refrigerator. The reverse compression waves will limit refrigeration efficiency by reheat cooling gas. The promotion from traditional rotation gas wave refrigerator with single opened pressure oscillating tubes to the streamlined pressure exchange gas wave refrigerator with double opened pressure oscillating tubes is mainly in terms of this issue. However, through weakened, reverse compression waves are still inevitable. For further development, the concept of a wave attenuator has been proposed, installed at the high-temperature (HT) port. Numerical simulation has been utilized to analyze mechanism of wave attenuator and the practical effect has been proved by experiment research. The conclusions are as follows: due to structure of wave attenuator, the intensity of reverse compression waves has been weakened; the optimal structure of wave attenuator has been obtained; the refrigeration efficiency of the refrigerator has been significantly increased because of wave attenuator in HT port.

References

References
1.
Zhao
,
W.
,
Jiang
,
Z. L.
,
Yu
,
H. R.
,
Saito
,
T.
, and
Takayama
,
K.
,
2005
, “
Wave Propagation Analysis in a Pressure-Wave-Refrigerator
,”
Mod. Phys. Lett. B
,
19
(
28–29
), pp.
1747
1750
.
2.
Saito
,
T.
,
Voinovich
,
P.
,
Zhao
,
W.
,
Shibasaki
,
K.
,
Shibasaki
,
S.
, and
Takayama
,
K.
,
2003
, “
Experimental and Numerical Study of Pressure Wave Refrigerator Performance
,”
Shock Waves
,
13
(
4
), pp.
253
259
.
3.
Rennaz
,
M. C.
,
1973
, “
New French Gas Cooler Recovers 120 Bpd Gasoline
,”
World Oil
,
177
(
2
), pp.
57
59
.https://www.osti.gov/biblio/6884499
4.
Deleris
,
C.
,
Amande
,
J. C.
, and
Viltard
,
J. C.
,
1982
, “
Barge-Mounted NGL Plant Boosts Recovery From Offshore Field
,”
World Oil
,
195
(
1
), pp.
105
107
.
5.
Fang
,
Y. Q.
, and
Hu
,
Z. M.
,
1987
, “
The Effect of the Tube Structure on the Refrigeration Efficiency of the Thermal Separator
,”
Fluid Eng.
, (
3
), pp.
57
60
.
6.
Li
,
X. L.
,
Huang
,
Q. F.
, and
Zhu
,
C.
,
2003
, “
Absorbing Reflected Shock Wave in Thermal Separator
,”
J. Chem. Ind. Eng.
,
54
(
2
), pp.
170
175
.
7.
Hu
,
D. P.
,
Liu
,
P. Q.
, and
Zhu
,
C.
,
2008
, “
A Weakening Reflected Shock Wave Method in Oscillating Tube
,”
J. Chem. Ind. Eng.
,
59
(
3
), pp.
562
566
.
8.
Li
,
Z. C.
,
Xu
,
L.
,
Zhao
,
L. P.
,
Xiong
,
W.
,
Guo
,
W.
, and
Sun
,
H.
,
2000
, “
Research on the Coupling of Pulse Tube and Gas Wave Refrigeration
,”
Cryog. Supercond.
,
28
(
2
), pp.
1
5
.
9.
Li
,
X. L.
, and
Zhu
,
C.
,
2001
, “
Elimination of Reflect Shock Wave in Oscillatory Tube
,”
J. Chem. Ind. Eng.
,
52
(
5
), pp.
379
380
.
10.
Dai
,
Y. Q.
,
Hu
,
D. P.
,
Liu
,
W.
, and
Zhu
,
C.
,
2003
, “
The CFD Analysis of Oscillatory Tube Equipped With Compound Damps
,”
Low Temp. Spec. Gases
,
21
(
2
), pp.
23
24
.
11.
Liu
,
P. Q.
,
2009
, “
Study on the Performance of Intersection Damp Gas Wave Refrigerator
,” Ph.D. thesis, Dalian University of Technology, Dalian, China.
12.
Liu
,
W.
, and
Ji
,
X. H.
,
2005
, “
Research of Weakening the Energy of the Reflecting Shock Waves Utilizing Two-Ports Structured Oscillating Tube
,”
Refrigeration
,
24
(
1
), pp.
12
15
.
13.
DaLian University Of Technology
,
2008
, “
The External-Circulation Dissipative Gas Wave Refrigerator
,” Chinese Patent No. CN200810011257.1.
14.
Welch
,
G. E.
, and
Chima
,
R. V.
,
1993
, “
Two-Dimensional CFD Modeling of Wave Rotor Flow Dynamics
,”
AIAA
Paper No. 93-3318-CP
.
15.
Pezhman
,
A.
,
Razi
,
N.
, and
Norbert
,
M.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
Shock Waves
,
128
(
4
), pp.
717
735
.
16.
Akbari
,
P.
,
Kharazi
,
A. A.
, and
Müller
,
N.
,
2003
, “
Utilizing Wave Rotor Technology to Enhance the Turbo Compression in Power and Refrigeration Cycles
,”
ASME
Paper No. IMECE2003-44222.
17.
Wilson
,
J.
,
Welch
,
G. E.
, and
Paxson
,
D. E.
,
2007
, “
Experimental Results of Performance Tests on a Four-Port Wave Rotor
,”
AIAA
Paper No. 2007-1250.
18.
Paxson
,
D. E.
,
Wilson
,
J.
, and
Welch
,
G. E.
,
2007
, “
Comparison Between Simulated and Experimentally Measured Performance of a Four Port Wave Rotor
,”
AIAA
Paper No. 2007-5049.
19.
Matsutomi
,
Y.
,
Hein
,
C.
,
Lian
,
C. Z.
,
Meyer
,
S.
, and
Heister
,
S.
,
2007
, “
Facility Development for Testing of Wave Rotor Combustion Rig
,”
AIAA
Paper No. 2007-5052.
20.
Akbari
,
P.
,
Szpynda
,
E.
, and
Nalim
,
M. R.
,
2007
, “
Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: A Progress Review
,”
AIAA
Paper No. 2007-5055.
21.
Liu
,
H.
,
2009
, “
Study on Optimizing the Structural Parameters of the Pressure Exchanging Refrigerator
,” MS. thesis, Dalian University of Technology, Dalian, China.
22.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z. G.
, and
Zhu
,
J.
,
1995
, “
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
23.
Federico
,
M.
,
Little
,
A. B.
,
Garimella
,
S.
, and
Bartosiewicz
, Y.
,
2015
, “
Computational and Experimental Analysis of Supersonic Air Ejector: Turbulence Modeling and Assessment of 3D Effects
,”
Int. J. Heat Fluid Flow
,
56
, pp.
305
316
.
24.
Hahn
,
M.
, and
Drikakis
,
D.
,
2009
, “
Assessment of Large-Eddy Simulation for Separated Internal Flow
,”
AIAA
Paper No. 2008-0667
.
25.
Kim
,
N. H.
,
Kim
,
D. Y.
,
Choi
,
Y. M.
, and
Byun
,
H. W.
,
2009
, “
Air-Side Heat Transfer and Pressure Drop Characteristics of Louver-Finned Aluminum Heat Exchangers at Different Inclination Angles
,”
J. Therm. Sci. Technol.
,
4
(
3
), pp.
350
361
.
26.
Liu
,
Z.
,
Li
,
H.
, and
Liu
,
K.
,
2017
, “
Design of High-Performance Water-in-Glass Evacuated Tube Solar Water Heaters by a High-Throughput Screening Based on Machine Learning: A Combined Modeling and Experimental Study
,”
Sol. Energy
,
142
, pp.
61
67
.
27.
Li
,
H.
,
Liu
,
Z.
, and
Liu
,
K.
,
2017
, “
Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening
,”
Int. J. Photoenergy
,
2017
, p. 4194251.
28.
Okamoto
,
K.
, and
Nagashima
,
T.
,
2007
, “
Visualization of Wave Rotor Inner Flow Dynamics
,”
J. Propul. Power
,
23
(
2
), pp.
292
300
.
You do not currently have access to this content.