An experimentally validated finite element model (FEM) was developed to analyze the design parameters of a latent heat storage device (LHSD) for a micro environmental control system (μX). The μX provides local cooling to an office worker in a room whose thermostat setpoint has been elevated from 23.9 °C (75 °F) to 26.1 °C (79 °F) in order to reduce heating, ventilation, and air conditioning (HVAC) energy consumption. For this application, the LHSD is designed to provide ≥50 W of cooling for a full, 8.5 h workday to restore thermal comfort in the warm, 26.1 °C room. The LHSD comprises several parallel slabs of encased phase change material (PCM) with interposed airflow channels. The airflow rate is selected to obtain ≥50 W of cooling at the end of the 8.5 h operation. The LHSD exhibits a decreasing cooling rate over the 8.5 h period when a constant airflow is passed through it, indicating that more cooling is supplied during the day than the minimum 50 W required for thermal comfort. The parametric analysis explores the effects of PCM thermal conductivity, slab thickness, air channel width, and number of slabs on LHSD performance. Parametric cases are compared against each other on the basis of their required PCM mass and energy consumption.

References

References
1.
U.S. Energy Information Administration
,
2014
, “
Annual Energy Outlook 2014 With Projections to 2040
,” U.S. Energy Information Administration, Washington, DC, Report No.
DOE/EIA-0383(2014)
.https://www.eia.gov/outlooks/aeo/pdf/0383(2014).pdf
2.
Hoyt
,
T.
,
Arens
,
E.
, and
Zhang
,
H.
,
2015
, “
Extending Air Temperature Setpoints: Simulated Energy Savings and Design Considerations for New and Retrofit Buildings
,”
Build. Environ.
,
88
, pp.
89
96
.
3.
Khalifa
,
H. E.
,
2015
, “
Micro Environmental Control System
,” U.S. Patent No. 15/507,065.
4.
Kong
,
M.
,
Dang
,
T. Q.
,
Zhang
,
J.
, and
Khalifa
,
H. E.
,
2017
, “
Micro-Environmental Control for Efficient Local Cooling
,”
Build. Environ.
,
118
, pp.
300
312
.
5.
Khalifa
,
H. E.
, and
Koz
,
M.
,
2018
, “
Phase Change Material Freezing in an Energy Storage Module for a Micro Environmental Control System
,”
ASME J. Therm. Sci. Eng. Appl.
(epub).
6.
Zhao
,
D.
, and
Tan
,
G.
,
2015
, “
Numerical Analysis of a Shell-and-Tube Latent Heat Storage Unit With Fins for Air-Conditioning Application
,”
Appl. Energy
,
138
, pp.
381
392
.
7.
Fuxin
,
N.
,
Long
,
N.
,
Minglu
,
Q.
,
Yang
,
Y.
, and
Shiming
,
D.
,
2013
, “
A Novel Triple-Sleeve Energy Storage Exchanger and Its Application in an Environmental Control System
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
1
6
.
8.
Mosaffa
,
A. H.
, and
Garousi Farshi
,
L.
,
2016
, “
Exergoeconomic and Environmental Analyses of an Air Conditioning System Using Thermal Energy Storage
,”
Appl Energy
,
162
, pp.
515
526
.
9.
Mosaffa
,
A. H.
,
Infante Ferreira
,
C. A.
,
Talati
,
F.
, and
Rosen
,
M. A.
,
2013
, “
Thermal Performance of a Multiple PCM Thermal Storage Unit for Free Cooling
,”
Energy Convers. Manage.
,
67
, pp.
1
7
.
10.
Chen
,
X.
,
Worall
,
M.
,
Omer
,
S.
,
Su
,
Y.
, and
Riffat
,
S.
,
2014
, “
Experimental Investigation on PCM Cold Storage Integrated With Ejector Cooling System
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
419
427
.
11.
López-Navarro
,
A.
,
Biosca-Taronger
,
J.
,
Corberán
,
J. M.
,
Peñalosa
,
C.
,
Lázaro
,
A.
,
Dolado
,
P.
, et al. .,
2014
, “
Performance Characterization of a PCM Storage Tank
,”
Appl. Energy
,
119
, pp.
151
162
.
12.
Elbahjaoui
,
R.
, and
El Qarnia
,
H.
,
2017
, “
Thermal Analysis of Nanoparticle-Enhanced Phase Change Material Solidification in a Rectangular Latent Heat Storage Unit Including Natural Convection
,”
Energy Build.
,
153
, pp.
1
17
.
13.
Sheikholeslami
,
M.
,
2018
, “
Numerical Modeling of Nano Enhanced PCM Solidification in an Enclosure With Metallic Fin
,”
J. Mol. Liq.
,
259
, pp.
424
438
.
14.
Sheikholeslami
,
M.
,
2018
, “
Numerical Simulation for Solidification in a LHTESS by Means of Nano-Enhanced PCM
,”
J. Taiwan Inst. Chem. Eng.
,
86
, pp.
25
41
.
15.
Sheikholeslami
,
M.
, and
Ghasemi
,
A.
,
2018
, “
Solidification Heat Transfer of Nanofluid in Existence of Thermal Radiation by Means of FEM
,”
Int. J. Heat Mass Transfer
,
123
, pp.
418
431
.
16.
Darzi
,
A. A. R.
,
Moosania
,
S. M.
,
Tan
,
F. L.
, and
Farhadi
,
M.
,
2013
, “
Numerical Investigation of Free-Cooling System Using Plate Type PCM Storage
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
155
163
.
17.
Koz
,
M.
,
Edren
,
H. S.
, and
Ezzat Khalifa
,
H.
,
2016
, “
Numerical Investigation of the Melting of a Phase Change Material in a Thermal Storage Device With Embedded Air Flow Channels
,”
ASME
Paper No. HT2016-7412.
18.
Yao
,
M.
, and
Chait
,
A.
,
1993
, “
An Alternarive Formulation of the Apparent Heat Capacity Method for Phase-Change Problems
,”
Numer. Heat Transfer Part B Fundam.
,
24
(
3
), pp.
279
300
.
19.
Tritton
,
D. J.
,
1988
,
Physical Fluid Dynamics
,
2nd ed.
,
Clarendon Press
,
New York
.
20.
Gregory
,
N.
, and
Sanford
,
K.
,
2008
,
Heat Transfer
,
Cambridge University Press
,
New York
.
21.
Aadmi
,
M.
,
Karkri
,
M.
, and
El Hammouti
,
M.
,
2015
, “
Heat Transfer Characteristics of Thermal Energy Storage for PCM (Phase Change Material) Melting in Horizontal Tube: Numerical and Experimental Investigations
,”
Energy
,
85
, pp.
339
352
.
22.
Niyas
,
H.
,
Prasad
,
S.
, and
Muthukumar
,
P.
,
2017
, “
Performance Investigation of a Lab–Scale Latent Heat Storage Prototype—Numerical Results
,”
Energy Convers. Manage.
,
135
, pp.
188
199
.
23.
Promoppatum
,
P.
,
Yao
,
S.-C.
,
Hultz
,
T.
, and
Agee
,
D.
,
2017
, “
Experimental and Numerical Investigation of the Cross-Flow PCM Heat Exchanger for the Energy Saving of Building HVAC
,”
Energy Build.
,
138
, pp.
468
478
.
24.
Meng
,
Z. N.
, and
Zhang
,
P.
,
2017
, “
Experimental and Numerical Investigation of a Tube-in-Tank Latent Thermal Energy Storage Unit Using Composite PCM
,”
Appl. Energy
,
190
, pp.
524
539
.
25.
Rubitherm Technologies GmbH, 2016, “Rubitherm Phase Change Material - RT18HC Data Sheet,” Rubitherm Technologies GmbH, Berlin, Germany.
26.
ASHRAE
,
2017
, “
Thermal Environmental Conditions for Human Occupancy
,”
American Society of Heating Refrigerating and Air-Conditioning Engineers
, Atlanta, GA, Standard No. 55-2017.
27.
Kozak
,
Y.
,
Rozenfeld
,
T.
, and
Ziskind
,
G.
,
2014
, “
Close-Contact Melting in Vertical Annular Enclosures With a Non-Isothermal Base: Theoretical Modeling and Application to Thermal Storage
,”
Int. J. Heat Mass Transfer
,
72
, pp.
114
127
.
You do not currently have access to this content.