This study analyzes phase change material (PCM) freezing process in a novel latent heat storage device (LHSD). Heat is removed from the PCM with an embedded evaporator. A mathematical model of freezing in a finite-thickness PCM slab is presented. An experimentally validated reduced-order model (ROM) based on the mathematical model was developed to analyze the heat transfer between the freezing PCM and an evaporating refrigerant flowing inside a flat, microchannel tube coil embedded in the PCM. A detailed finite element model (FEM) of the same device was also developed and employed to verify the validity of the ROM over a wider range of conditions. The freezing times and total “cooling” stored in the PCM computed by the ROM agree very well with those computed by the detailed FEM. The ROM executes in ∼1 min for a full heat exchanger, compared with more than 10 h for the FEM, making the former much more practical for use in parametric analysis and optimization of design alternatives.

References

References
1.
U.S. Energy Information Administration,
2014
, “
Annual Energy Outlook 2014 With Projections to 2040. U.S. Energy Information Administration
,” Report No.
DOE/EIA-0383
.https://www.eia.gov/outlooks/aeo/pdf/0383(2014).pdf
2.
ASHRAE
2017
, “
American Society of Heating Refrigerating and Air-Conditioning Engineers—Thermal Environmental Conditions for Human Occupancy
,” ASHRAE, Atlanta, GA, Standard No. Standard 55-2017.
3.
ASHRAE,
2016
, “
American Society of Heating Refrigerating and Air-Conditioning Engineers–Ventilation for Acceptable Indoor Air Quality (ANSI Approved)
,” ASHRAE, Atlanta, GA, Standard No. 62.1-2016.
4.
Hoyt
,
T.
,
Arens
,
E.
, and
Zhang
,
H.
,
2015
, “
Extending Air Temperature Setpoints: Simulated Energy Savings and Design Considerations for New and Retrofit Buildings
,”
Build. Environ.
,
88
, pp.
89
96
.
5.
Melikov
,
A. K.
,
2004
, “
Personalized Ventilation
,”
Indoor Air
,
14
(
Suppl. 7
), pp.
157
167
.
6.
Cermak
,
R.
,
Melikov
,
A.
,
Forejt
,
L.
, and
Kovar
,
O.
,
2006
, “
Performance of Personalized Ventilation in Conjunction With Mixing and Displacement Ventilation
,”
HVACR Res.
,
12
(
2
), pp.
295
311
.
7.
Khalifa
,
H. E.
,
Janos
,
M. I.
, and
Dannenhoffer
,
J. F.
,
2009
, “
Experimental Investigation of Reduced-Mixing Personal Ventilation Jets
,”
Build. Environ.
,
44
(
8
), p.
1551
.
8.
Russo
,
J. S.
,
Dang
,
T. Q.
, and
Khalifa
,
H. E.
,
2009
, “
Computational Analysis of Reduced-Mixing Personal Ventilation Jets
,”
Build. Environ.
,
44
(
8
), pp.
1559
1567
.
9.
Brager
,
G.
,
Zhang
,
H.
, and
Arens
,
E.
,
2015
, “
Evolving Opportunities for Providing Thermal Comfort
,”
Build. Res. Inf.
,
43
(
3
), pp.
274
287
.
10.
Zhang
,
H.
,
Arens
,
E.
, and
Zhai
,
Y.
,
2015
, “
A Review of the Corrective Power of Personal Comfort Systems in Non-Neutral Ambient Environments
,”
Build. Environ.
,
91
, pp.
15
41
.
11.
Khalifa
,
H. E.
,
2015
, “
Micro Environmental Control System
,” U.S. Patent No. 15/507,065.
12.
Kong
,
M.
,
Dang
,
T. Q.
,
Zhang
,
J.
, and
Khalifa
,
H. E.
,
2017
, “
Micro-Environmental Control for Efficient Local Cooling
,”
Build. Environ.
,
118
, pp.
300
312
.
13.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J.-F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
–1
84
.
14.
Aadmi
,
M.
,
Karkri
,
M.
, and
El Hammouti
,
M.
,
2015
, “
Heat Transfer Characteristics of Thermal Energy Storage for PCM (Phase Change Material) Melting in Horizontal Tube: Numerical and Experimental Investigations
,”
Energy
,
85
, pp.
339
352
.
15.
Bruno
,
F.
,
Tay
,
N. H. S.
, and
Belusko
,
M.
,
2014
, “
Minimising Energy Usage for Domestic Cooling With Off-Peak PCM Storage
,”
Energy Build.
,
76
, pp.
347
353
.
16.
Chiu
,
J. N. W.
, and
Martin
,
V.
,
2013
, “
Multistage Latent Heat Cold Thermal Energy Storage Design Analysis
,”
Appl. Energy
,
112
, pp.
1438
1445
.
17.
Promoppatum
,
P.
,
Yao
,
S.-C.
,
Hultz
,
T.
, and
Agee
,
D.
,
2017
, “
Experimental and Numerical Investigation of the Cross-Flow PCM Heat Exchanger for the Energy Saving of Building HVAC
,”
Energy Build.
,
138
, pp.
468
478
.
18.
Niyas
,
H.
,
Prasad
,
S.
, and
Muthukumar
,
P.
,
2017
, “
Performance Investigation of a Lab–Scale Latent Heat Storage Prototype—Numerical Results
,”
Energy Convers. Manage.
,
135
, pp.
188
199
.
19.
Chaiyat
,
N.
,
2015
, “
Energy and Economic Analysis of a Building Air-Conditioner With a Phase Change Material (PCM). Energy
,”
Convers. Manag
e.,
94
, pp.
150
158
.
20.
Zhao
,
D.
, and
Tan
,
G.
,
2015
, “
Numerical Analysis of a Shell-and-Tube Latent Heat Storage Unit With Fins for Air-Conditioning Application
,”
Appl. Energy
,
138
, pp.
381
392
.
21.
Meng
,
Z. N.
, and
Zhang
,
P.
,
2017
, “
Experimental and Numerical Investigation of a Tube-in-Tank Latent Thermal Energy Storage Unit Using Composite PCM
,”
Appl. Energy
,
190
, pp.
524
539
.
22.
Azzouz
,
K.
,
Leducq
,
D.
, and
Gobin
,
D.
,
2008
, “
Performance Enhancement of a Household Refrigerator by Addition of Latent Heat Storage
,”
Int. J. Refrig.
,
31
(
5
), pp.
892
901
.
23.
Mastani Joybari
,
M.
,
Haghighat
,
F.
,
Moffat
,
J.
, and
Sra
,
P.
,
2015
, “
Heat and Cold Storage Using Phase Change Materials in Domestic Refrigeration Systems: The State-of-the-Art Review
,”
Energy Build.
,
106
, pp.
111
124
.
24.
Khan
,
M. I. H.
,
2016
, “
Conventional Refrigeration Systems Using Phase Change Material: A Review
,”
Int. J. Air-Cond. Refrig.
,
24
(
3
), p.
1630007
.
25.
Khalifa
,
H. E.
, and
Koz
,
M.
,
2016
, “
Numerical Investigation of the Freezing of a Phase Change Material in a Thermal Storage Device With an Embedded Evaporator
,”
ASME
Paper No. HT2016-7409.
26.
Alexiades
,
V.
, and
Solomon
,
A. D.
,
1993
,
Mathematical Modeling of Melting and Freezing Processes
,
Taylor & Francis
,
Washington, DC
.
27.
Tarzia
,
D. A.
,
2015
, “
Explicit Solutions for the Solomon-Wilson-Alexiades's Mushy Zone Model With Convective or Heat Flux Boundary Conditions
,”
J. Appl. Math.
,
2015
, pp.
1
9
.
28.
Ceretani
,
A. N.
, and
Tarzia
,
D. A.
,
2018
, “
Similarity Solution for a Two-Phase One-Dimensional Stefan Problem With a Convective Boundary Condition and a Mushy Zone Model
,”
Comput. Appl. Math.
,
37
(
2
), pp.
2201
2217
.
29.
Ceretani
,
A. N.
,
Salva
,
N. N.
, and
Tarzia
,
D. A.
,
2018
, “
An Exact Solution to a Stefan Problem With Variable Thermal Conductivity and a Robin Boundary Condition
,”
Nonlinear Anal. Real World Appl.
,
40
, pp.
243
259
.
30.
Prud'homme
,
M.
,
Nguyen
,
T. H.
, and
Nguyen
,
D. L.
,
1989
, “
A Heat Transfer Analysis for Solidification of Slabs, Cylinders, and Spheres
,”
ASME J. Heat Transfer
,
111
(
3
), pp.
699
705
.
31.
Charach
,
C.
,
1986
,
Solidification (Melting) in Finite Extent PCM Bodies
,
Elsevier
, Montreal, Canada, pp.
786
790
.
32.
Chiba
,
R.
,
2014
, “
A Series Solution for Heat Conduction Problem With Phase Change in a Finite Slab
,”
Abstr. Appl. Anal.
,
2014
, pp.
1
9
.
33.
Komori
,
T.
, and
Hirai
,
E.
,
1972
, “
Solutions of Heat Conduction Problem With Change of Phase—A Slab
,”
J. Chem. Eng. Jpn.
,
5
(
3
), pp.
242
248
.
34.
Yang
,
Z.
,
Sen
,
M.
, and
Paolucci
,
S.
,
2003
, “
Solidification of a Finite Slab With Convective Cooling and Shrinkage
,”
Appl. Math. Model
,
27
(
9
), pp.
733
762
.
35.
Mitchell
,
S. L.
,
2015
, “
Applying the Combined Integral Method to Two-Phase Stefan Problems With Delayed Onset of Phase Change
,”
J. Comput. Appl. Math.
,
281
, pp.
58
73
.
36.
Frank P
,
I.
, and
David P
,
DWitt.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th ed
,
Wiley
,
Hoboken, NJ
.
37.
Özışık
,
M. N.
,
Heat Conduction
,
2nd ed
,
Wiley
,
New York
.
38.
Mitchell
,
S. L.
, and
Vynnycky
,
M.
,
2014
, “
On the Numerical Solution of Two-Phase Stefan Problems With Heat-Flux Boundary Conditions
,”
J. Comput. Appl. Math.
,
264
, pp.
49
64
.
39.
COMSOL,
2017
, “
COMSOL Multiphysics Reference Manual
,” COMSOL AB, Burlington, MA.
40.
Collier
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
3rd. ed.
Clarendon Press
,
Oxford, UK
.
41.
Kestin
,
J.
,
1968
,
A Course in Thermodynamics
, Vol.
2
,
Blaisdell Publishing Company
,
Waltham, MA
.
42.
Yao
,
M.
, and
Chait
,
A.
,
1993
, “
An Alternarive Formulation of the Apparent Heat Capacity Method for Phase-Change Problems
,”
Numer. Heat Transfer Part B Fundam.
,
24
(
3
), pp.
279
300
.
43.
Rubitherm Technologies GmbH,
2016
, “
Rubitherm Phase Change Material. RT18HC Data Sheet
,” Berlin.
44.
Solomon
,
G. R.
,
Karthikeyan
,
S.
, and
Velraj
,
R.
,
2013
, “
Sub Cooling of PCM Due to Various Effects During Solidification in a Vertical Concentric Tube Thermal Storage Unit
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
505
511
.
You do not currently have access to this content.