In this work, numerical experiments were performed to compare the heat transfer and thermodynamic performance of melting process inside the square-shaped thermal energy storage system with three different heating configurations: an isothermal heating from left side-wall or bottom-wall or top-wall and with three adiabatic walls. The hot wall is maintained at a temperature higher than the melting temperature of the phase change material (PCM), while all other walls are perfectly insulated. The transient numerical simulations were performed for melting Gallium (a low Prandtl number Pr = 0.0216, low Stefan number, Ste = 0.014, PCM with high latent heat to density ratio) at moderate Rayleigh number (Ra ≊ 105). The transient numerical simulations consist of solving coupled continuity, momentum, and energy equation in the unstructured formulation using the PISO algorithm. In this work, the fixed grid, a source-based enthalpy-porosity approach has been adopted. The heat transfer performance of the melting process was analyzed by studying the time evolution of global fluid fraction, Nusselt number at the hot wall, and volume-averaged normalized flow-kinetic-energy. The thermodynamic performance was analyzed by calculating the local volumetric entropy generation rates and absolute entropy generation considering both irreversibilities due to the finite temperature gradient and viscous dissipation. The bottom-heating configuration yielded the maximum Nusselt number but has a slightly higher total change in entropy generation compared to other heating configurations.

References

References
1.
Zalba
,
B.
,
Marın
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
2.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
3.
Waqas
,
A.
, and
Din
,
Z. U.
,
2013
, “
Phase Change Material PCM Storage for Free Cooling of Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
607
625
.
4.
Soares
,
N.
,
Costa
,
J.
,
Gaspar
,
A.
, and
Santos
,
P.
,
2013
, “
Review of Passive PCM Latent Heat Thermal Energy Storage Systems Towards Buildings Energy Efficiency
,”
Energy Build.
,
59
, pp.
82
103
.
5.
Tan
,
F.
, and
Tso
,
C.
,
2004
, “
Cooling of Mobile Electronic Devices Using Phase Change Materials
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
159
169
.
6.
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2004
, “
Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
1
), pp.
191
199
.
7.
Kandasamy
,
R.
,
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2008
, “
Transient Cooling of Electronics Using Phase Change Material (PCM)-Based Heat Sinks
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1047
1057
.
8.
Lappa
,
M.
,
2009
,
Thermal Convection: Patterns, Evolution and Stability
,
Wiley
, Chichester, UK.
9.
Davis
,
S. H.
,
Huppert
,
H.
,
Müller
,
U.
, and
Worster
,
M.
,
2012
,
Interactive Dynamics of Convection and Solidification
, Vol.
219
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
10.
Ulvrová
,
M.
,
Labrosse
,
S.
,
Coltice
,
N.
,
Råback
,
P.
, and
Tackley
,
P.
,
2012
, “
Numerical Modelling of Convection Interacting With a Melting and Solidification Front: Application to the Thermal Evolution of the Basal Magma Ocean
,”
Phys. Earth Planet. Inter.
,
206
, pp.
51
66
.
11.
Batina
,
J.
,
Blancher
,
S.
, and
Kouskou
,
T.
,
2014
, “
Modelling of a Phase Change Material Melting Process Heated From Below Using Spectral Collocation Methods
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
3
), pp.
697
734
.
12.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
174
181
.
13.
Dietsche
,
C.
, and
Müller
,
U.
,
1985
, “
Influence of Bénard Convection on Solid–Liquid Interfaces
,”
J. Fluid Mech.
,
161
(
1
), pp.
249
268
.
14.
Sheikholeslami
,
M.
,
Lohrasbi
,
S.
, and
Ganji
,
D. D.
,
2016
, “
Numerical Analysis of Discharging Process Acceleration in LHTESS by Immersing Innovative Fin Configuration Using Finite Element Method
,”
Appl. Therm. Eng.
,
107
, pp.
154
166
.
15.
Sheikholeslami
,
M.
,
2017
, “
Influence of Coulomb Forces on Fe3O4–H2O Nanofluid Thermal Improvement
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
821
829
.
16.
Sheikholeslami
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Numerical Study for External Magnetic Source Influence on Water Based Nanofluid Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
106
, pp.
745
755
.
17.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Melting Heat Transfer Influence on Nanofluid Flow Inside a Cavity in Existence of Magnetic Field
,”
Int. J. Heat Mass Transfer
,
114
, pp.
517
526
.
18.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
, Boca Raton, FL.
19.
Satbhai
,
O.
,
Roy
,
S.
, and
Ghosh
,
S.
,
2017
, “
A Numerical Study to Investigate the Heat Transfer and Thermodynamic Performance of a Natural Convection Driven Thermal Energy Storage System
,”
ASME
Paper No. IMECE2017-72516.
20.
Lim
,
J.
,
Bejan
,
A.
, and
Kim
,
J.
,
1992
, “
Thermodynamic Optimization of Phase-Change Energy Storage Using Two or More Materials
,”
ASME J. Energy Resour. Technol.
,
114
(
1
), pp.
84
90
.
21.
Aceves-Saborio
,
S.
,
Nakamura
,
H.
, and
Reistad
,
G.
,
1994
, “
Optimum Efficiencies and Phase Change Temperatures in Latent Heat Storage Systems
,”
ASME J. Energy Resour. Technol.
,
116
(
1
), pp.
79
86
.
22.
Krane
,
R. J.
,
1987
, “
A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
43
57
.
23.
Badar
,
M. A.
,
Zubair
,
S. M.
, and
Al-Farayedhi
,
A. A.
,
1993
, “
Second-Law-Based Thermoeconomic Optimization of a Sensible Heat Thermal Energy Storage System
,”
Energy
,
18
(
6
), pp.
641
649
.
24.
Brent
,
A.
,
Voller
,
V.
, and
Reid
,
K.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer, Part A
,
13
(
3
), pp.
297
318
.
25.
Voller
,
V.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
26.
Voller
,
V.
,
Brent
,
A.
, and
Prakash
,
C.
,
1989
, “
The Modelling of Heat, Mass and Solute Transport in Solidification Systems
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1719
1731
.
27.
Satbhai
,
O.
,
Roy
,
S.
, and
Ghosh
,
S.
,
2012
, “
Numerical Simulation of Laser Surface Remelting on Unstructured Grids
,”
Trans. Indian Inst. Met.
,
65
(
6
), pp.
833
840
.
28.
Satbhai
,
O.
,
2013
, “
Heat Transfer Model for Laser Surface Remelting: Towards a Multi-Scale Solidification Model
,” Master's thesis, Indian Institute of Technology, Kharagpur, India.
29.
Minkowycz
,
W.
,
1996
,
Advances in Numerical Heat Transfer
, Vol.
1
,
CRC Press
, Boca Raton, FL.
30.
Prakash
,
C.
,
Samonds
,
M.
, and
Singhal
,
A.
,
1987
, “
A Fixed Grid Numerical Methodology for Phase Change Problems Involving a Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
30
(
12
), pp.
2690
2694
.
31.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
,
Wiley
, Hoboken, NJ.
32.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
,
3rd ed.
,
Springer
, Berlin.
33.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Pearson Education
, London.
34.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D. thesis, Imperial College of Science, Technology and Medicine, London.
35.
Satbhai
,
O.
,
Roy
,
S.
, and
Ghosh
,
S.
,
2017
, “
A Parametric Multi-Scale, Multiphysics Numerical Investigation in a Casting Process for Al-Si Alloy and a Macroscopic Approach for Prediction of ECT and CET Events
,”
Appl. Therm. Eng.
,
113
, pp.
386
412
.
36.
Sheikholeslami
,
M.
, and
Shehzad
,
S.
,
2017
, “
Magnetohydrodynamic Nanofluid Convective Flow in a Porous Enclosure by Means of LBM
,”
Int. J. Heat Mass Transfer
,
113
, pp.
796
805
.
37.
Moukalled
,
F.
,
Mangani
,
L.
, and
Darwish
,
M.
,
2016
,
The Finite Volume Method in Computational Fluid Dynamics
,
Springer
, London.
38.
Gobin
,
D.
, and
Benard
,
C.
,
1992
, “
Melting of Metals Driven by Natural Convection in the Melt: Influence of Prandtl and Rayleigh Numbers
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
521
524
.
39.
Lohse
,
D.
, and
Xia
,
K.-Q.
,
2010
, “
Small-Scale Properties of Turbulent Rayleigh-Bénard Convection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
335
364
.
40.
Lappa
,
M.
,
2011
, “
Some Considerations About the Symmetry and Evolution of Chaotic Rayleigh–Benard Convection: The Flywheel Mechanism and the ‘Wind’ of Turbulence
,”
C. R. Mec.
,
339
(
9
), pp.
563
572
.
41.
Ahlers
,
G.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2009
, “
Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Bénard Convection
,”
Rev. Mod. Phys.
,
81
(
2
), p.
503
.
42.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2017
, “
Three-Dimensional Numerical Investigation of Thermodynamic Performance Due to Conjugate Natural Convection From Horizontal Cylinder With Annular Fins
,”
ASME J. Heat Transfer
,
139
(
8
), p.
082501
.
You do not currently have access to this content.